Skip to main content

Overview of Direct Liquid Oxidation Fuel Cells and its Application as Micro-Fuel Cells

  • Chapter
  • First Online:

Abstract

Direct liquid fuel cells (DLFCs) are a special type of FCs that generate power output through the electro-oxidation of liquid fuels easier to handle and store than the hydrogen gas used in traditional FCs, thus increasing the range of possible applications. As electronic devices continue to evolve at the macroscale (mobile phones, laptops) and at the micro-scale (micro-electromechanical systems, wearables, and implantable devices), micro-fuel cells (μFCs) are considered as a promising alternatives to batteries as power sources.

In this chapter, the development of low-temperature micro-direct liquid fuel cells (μDLFCs) operating with methanol, ethanol, formic acid, ethylene glycol, glycerol, or glucose as fuel is reviewed, covering structural design, membranes and catalysts used, and power output performance.

The key limitations for world-wide commercialization of μDLFCs include the fabrication process, water management, fuel crossover through the membranes, and the low activity/durability/selectivity of the catalysts. At present, the state-of-the-art power output is about 100, 58.0, 45.0, 30.3, 39.5, and 0.0063 mW cm−2 for methanol, ethanol, formic acid, ethylene glycol, glycerol, and glucose as fuel in μFCs, respectively.

Future research prospects in this field regarding each of these fuels are presented, confirming the μDLFC potential to replace traditional batteries in most portable applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sadhasivam T, Dhanabalan K, Roh SH, Kim TH, Park KW, Jung S, Kurkuri MD, Jung HY (2017) A comprehensive review on unitized regenerative fuel cells: crucial challenges and developments. Int J Hydrog Energy 42:4415–4433. https://doi.org/10.1016/j.ijhydene.2016.10.140

    Article  CAS  Google Scholar 

  2. Nguyen N-T, Chan SH (2006) Micromachined polymer electrolyte membrane and direct methanol fuel cells-a review. J Micromech Microeng 16:R1–R12. https://doi.org/10.1088/0960-1317/16/4/R01

    Article  CAS  Google Scholar 

  3. Pichonat T, Gauthier-Manuel B (2007) Recent developments in MEMS-based miniature fuel cells. Microsyst Technol 13:1671–1678. https://doi.org/10.1007/s00542-006-0342-5

    Article  CAS  Google Scholar 

  4. Sundarrajan S, Allakhverdiev SI, Ramakrishna S (2012) Progress and perspectives in micro direct methanol fuel cell. Int J Hydrog Energy 37:8765–8786. https://doi.org/10.1016/j.ijhydene.2011.12.017

    Article  CAS  Google Scholar 

  5. Esquivel JP, Sabaté N, Santander J, Torres N, Cané C (2008) Fabrication and characterization of a passive silicon-based direct methanol fuel cell. Microsyst Technol 14:535–541. https://doi.org/10.1007/s00542-007-0451-9

    Article  CAS  Google Scholar 

  6. Torres N, Santander J, Esquivel JP, Sabaté N, Figueras E, Ivanov P, Fonseca L, Gràcia I, Cané C (2008) Performance optimization of a passive silicon-based micro-direct methanol fuel cell. Sensors Actuators B Chem 132:540–544. https://doi.org/10.1016/j.snb.2007.11.035

    Article  CAS  Google Scholar 

  7. Esquivel JP, Sabaté N, Santander J, Torres-Herrero N, Gràcia I, Ivanov P, Fonseca L, Cané C (2009) Influence of current collectors design on the performance of a silicon-based passive micro direct methanol fuel cell. J Power Sources 194:391–396. https://doi.org/10.1016/j.jpowsour.2009.04.065

    Article  CAS  Google Scholar 

  8. Zhao TS, Chen R, Yang WW, Xu C (2009) Small direct methanol fuel cells with passive supply of reactants. J Power Sources 191:185–202. https://doi.org/10.1016/j.jpowsour.2009.02.033

    Article  CAS  Google Scholar 

  9. Wang C, Waje M, Wang X, Tang JM, Haddon RC, Yan Y (2004) Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett 4:345–348. https://doi.org/10.1021/nl034952p

    Article  CAS  Google Scholar 

  10. Esquivel JP, Sabaté N, Tarancón A, Torres-Herrero N, Dávila D, Santander J, Gràcia I, Cané C (2009) Hybrid polymer electrolyte membrane for silicon-based micro fuel cells integration. J Micromech Microeng 19:65006 https://doi.org/10.1088/0960-1317/19/6/065006

    Article  Google Scholar 

  11. Torres N, Duch M, Santander J, Sabaté N, Esquivel JP, Tarancón A, Cané C (2009) Porous silicon membrane for micro fuel cell applications. J New Mater Electrochem Syst 12:93–96

    CAS  Google Scholar 

  12. Esquivel JP, Senn T, Hernández-Fernández P, Santander J, Lörgen M, Rojas S, Löchel B, Cané C, Sabaté N (2010) Towards a compact SU-8 micro-direct methanol fuel cell. J Power Sources 195:8110–8115. https://doi.org/10.1016/j.jpowsour.2010.07.050

    Article  CAS  Google Scholar 

  13. Moghaddam S, Pengwang E, Jiang Y-B, Garcia AR, Burnett DJ, Brinker CJ, Masel RI, Shannon MA (2010) An inorganic-organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure. Nat Nanotechnol 5:230–236. https://doi.org/10.1038/nnano.2010.13

    Article  CAS  PubMed  Google Scholar 

  14. Xing X, Cherevko S, Chung CH (2011) Porous Pd films as effective ethanol oxidation electrocatalysts in alkaline medium. Mater Chem Phys 126:36–40. https://doi.org/10.1016/j.matchemphys.2010.12.027

    Article  CAS  Google Scholar 

  15. Kouassi S, Gautier G, Thery J, Desplobain S, Borella M, Ventura L, Laurent JY (2012) Proton exchange membrane micro fuel cells on 3D porous silicon gas diffusion layers. J Power Sources 216:15–21. https://doi.org/10.1016/j.jpowsour.2012.05.046

    Article  CAS  Google Scholar 

  16. Sabaté N, Esquivel JP, Santander J, Hauer JG, Verjulio RW, Gràcia I, Salleras M, Calaza C, Figueras E, Cané C, Fonseca L (2014) New approach for batch microfabrication of silicon-based micro fuel cells. Microsyst Technol 20:341–348. https://doi.org/10.1007/s00542-013-1781-4

    Article  CAS  Google Scholar 

  17. Kjeang E, Djilali N, Sinton D (2009) Microfluidic fuel cells: a review. J Power Sources 186:353–369. https://doi.org/10.1016/j.jpowsour.2008.10.011

    Article  CAS  Google Scholar 

  18. Zebda A, Renaud L, Cretin M, Pichot F, Innocent C, Ferrigno R, Tingry S (2009) A microfluidic glucose biofuel cell to generate micropower from enzymes at ambient temperature. Electrochem Commun 11:592–595. https://doi.org/10.1016/j.elecom.2008.12.036

    Article  CAS  Google Scholar 

  19. Mousavi Ehteshami SM, Asadnia M, Tan SN, Chan SH (2016) Paper-based membraneless hydrogen peroxide fuel cell prepared by micro-fabrication. J Power Sources 301:392–395. https://doi.org/10.1016/j.jpowsour.2015.10.038

    Article  CAS  Google Scholar 

  20. Abrego-Martínez JC, Wang Y, Mendoza-Huizar LH, Ledesma-Garcia J, Cuevas-Muñiz FM, Mohamedi M, Arriaga LG (2016) Mixed-reactant ethanol fuel cell using an electrochemically deposited Ag@Pt tolerant cathode. Int J Hydrog Energy 41:23417–23424. https://doi.org/10.1016/j.ijhydene.2016.09.032

    Article  CAS  Google Scholar 

  21. Tang Y, Yuan W, Pan M, Tang B, Li Z, Wan Z (2010) Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell. J Power Sources 195:5628–5636. https://doi.org/10.1016/j.jpowsour.2010.03.069

    Article  CAS  Google Scholar 

  22. Li X, Faghri A, Xu C (2010) Structural optimization of the direct methanol fuel cell passively fed with a high-concentration methanol solution. J Power Sources 195:8202–8208. https://doi.org/10.1016/j.jpowsour.2010.06.041

    Article  CAS  Google Scholar 

  23. Feng Y, Gago A, Timperman L, Alonso-Vante N (2011) Chalcogenide metal centers for oxygen reduction reaction: activity and tolerance. Electrochim Acta 56:1009–1022. https://doi.org/10.1016/j.electacta.2010.09.085

    Article  CAS  Google Scholar 

  24. Zhao X, Yin M, Ma L, Liang L, Liu C, Liao J, Lu T, Xing W (2011) Recent advances in catalysts for direct methanol fuel cells. Energy Environ Sci 4:2736–2753. https://doi.org/10.1039/c1ee01307f

    Article  CAS  Google Scholar 

  25. Gago AS, Gochi-Ponce Y, Feng YJ, Esquivel JP, Sabaté N, Santander J, Alonso-Vante N (2012) Tolerant chalcogenide cathodes of membraneless micro fuel cells. ChemSusChem 5:1488–1494. https://doi.org/10.1002/cssc.201200009

    Article  CAS  PubMed  Google Scholar 

  26. Weiland M, Wagner S, Hahn R, Reichl H (2013) Design and evaluation of a passive self-breathing micro fuel cell for autonomous portable applications. Int J Hydrog Energy 38:440–446. https://doi.org/10.1016/j.ijhydene.2012.09.117

    Article  CAS  Google Scholar 

  27. Xiaowei L, Chunguang S, Yufeng Z, Wei W, Xuebin L, Ding T (2006) Application of MEMS technology to micro direct methanol fuel cell. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS’06, pp 699–702

    Google Scholar 

  28. Scotti G, Kanninen P, Kallio T, Franssila S (2012) Integration of carbon felt gas diffusion layers in silicon micro fuel cells. J Micromech Microeng 22:94006. https://doi.org/10.1088/0960-1317/22/9/094006

    Article  CAS  Google Scholar 

  29. Yeom J, Mozsgai GZ, Flachsbart BR, Choban ER, Asthana A, Shannon MA, Kenis PJA (2005) Microfabrication and characterization of a silicon-based millimeter scale, PEM fuel cell operating with hydrogen, methanol, or formic acid. Sensors Actuators B Chem 107:882–891. https://doi.org/10.1016/j.snb.2004.12.050

    Article  CAS  Google Scholar 

  30. Chang CL, Chang TC, Ho WY, Hwang JJ, Wang DY (2006) Electrochemical performance of PEM fuel cell with Pt-Ru electro-catalyst layers deposited by sputtering. Surf Coat Technol 201:4442–4446. https://doi.org/10.1016/j.surfcoat.2006.08.036

    Article  CAS  Google Scholar 

  31. Tang YH, Huang MJ, Shiao MH, Yang CR (2011) Fabrication of silicon nanopillar arrays and application on direct methanol fuel cell. Microelectron Eng 88:2580–2583. https://doi.org/10.1016/j.mee.2010.12.075

    Article  CAS  Google Scholar 

  32. Jeng KT, Chien CC, Hsu NY, Yen SC, Chiou SD, Lin SH, Huang WM (2006) Performance of direct methanol fuel cell using carbon nanotube-supported Pt-Ru anode catalyst with controlled composition. J Power Sources 160:97–104. https://doi.org/10.1016/j.jpowsour.2006.01.057

    Article  CAS  Google Scholar 

  33. Saha MS, Kundu A (2010) Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode. J Power Sources 195:6255–6261. https://doi.org/10.1016/j.jpowsour.2010.04.015

    Article  CAS  Google Scholar 

  34. Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5:187–200. https://doi.org/10.1002/fuce.200400045

    Article  CAS  Google Scholar 

  35. Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450. https://doi.org/10.1016/j.jpowsour.2009.11.145

    Article  CAS  Google Scholar 

  36. Yu EH, Wang X, Krewer U, Li L, Scott K (2012) Direct oxidation alkaline fuel cells: from materials to systems. Energy Environ Sci 5:5668–5680 https://doi.org/10.1039/C2EE02552C

    Article  CAS  Google Scholar 

  37. Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu T, Zhuang L (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7:3135–3191. https://doi.org/10.1039/C4EE01303D

    Article  CAS  Google Scholar 

  38. Verjulio RW, Alcaide F, Álvarez G, Sabaté N, Torres-Herrero N, Esquivel JP, Santander J (2013) A micro alkaline direct ethanol fuel cell with platinum-free catalysts. J Micromech Microeng 23:115006. https://doi.org/10.1088/0960-1317/23/11/115006

    Article  CAS  Google Scholar 

  39. Verjulio RW, Santander J, Sabaté N, Esquivel JP, Torres-Herrero N, Habrioux A, Alonso-Vante N (2014) Fabrication and evaluation of a passive alkaline membrane micro direct methanol fuel cell. Int J Hydrog Energy 39:5406–5413. https://doi.org/10.1016/j.ijhydene.2013.12.014

    Article  CAS  Google Scholar 

  40. Verjulio RW, Santander J, Ma J, Alonso-Vante N (2016) Selective CoSe/C cathode catalyst for passive air-breathing alkaline anion exchange membrane μ-direct methanol fuel cell (AEM-μDMFC). Int J Hydrog Energy 41:19595–19600 https://doi.org/10.1016/j.ijhydene.2016.01.132

    Article  CAS  Google Scholar 

  41. Zhao TS, Yang WW, Chen R, Wu QX (2010) Towards operating direct methanol fuel cells with highly concentrated fuel. J Power Sources 195:3451–3462. https://doi.org/10.1016/j.jpowsour.2009.11.140

    Article  CAS  Google Scholar 

  42. Li X, Faghri A (2013) Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions. J Power Sources 226:223–240. https://doi.org/10.1016/j.jpowsour.2012.10.061

    Article  CAS  Google Scholar 

  43. Gago AS, Esquivel J-P, Sabate N, Santander J, Alonso-Vante N (2015) Comprehensive characterization and understanding of micro-fuel cells operating at high methanol concentrations. Beilstein J Nanotechnol 6:2000–2006 https://doi.org/10.3762/bjnano.6.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shimizu T, Momma T, Mohamedi M, Osaka T, Sarangapani S (2004) Design and fabrication of pumpless small direct methanol fuel cells for portable applications. J Power Sources 137:277–283. https://doi.org/10.1016/j.jpowsour.2004.06.008

    Article  CAS  Google Scholar 

  45. Aravamudhan S, Rahman ARA, Bhansali S (2005) Porous silicon based orientation independent, self-priming micro direct ethanol fuel cell. Sensors Actuators A Phys 123–124:497–504. https://doi.org/10.1016/j.sna.2005.03.069

    Article  CAS  Google Scholar 

  46. Chan SH, Nguyen N-T, Xia Z, Wu Z (2005) Development of a polymeric micro fuel cell containing laser-micromachined flow channels. J Micromech Microeng 15:231–236 https://doi.org/10.1088/0960-1317/15/1/032

    Article  CAS  Google Scholar 

  47. Schmitz A, Tranitz M, Wagner S, Hahn R, Hebling C (2003) Planar self-breathing fuel cells. J Power Sources 118:162–171. https://doi.org/10.1016/S0378-7753(03)00080-6

    Article  CAS  Google Scholar 

  48. Kamarudin SK, Achmad F, Daud WRW (2009) Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrog Energy 34:6902–6916. https://doi.org/10.1016/j.ijhydene.2009.06.013

    Article  CAS  Google Scholar 

  49. Abrego-Martínez JC, Moreno-Zuria A, Cuevas-Muñiz FM, Arriaga LG, Sun S, Mohamedi M (2017) Design, fabrication and performance of a mixed-reactant membraneless micro direct methanol fuel cell stack. J Power Sources 371:10–17. https://doi.org/10.1016/j.jpowsour.2017.10.026

    Article  CAS  Google Scholar 

  50. Kauranen PS, Skou E (1996) Mixed methanol oxidation/oxygen reduction currents on a carbon supported Pt catalyst. J Electroanal Chem 408:189–198. https://doi.org/10.1016/0022-0728(96)04515-9

    Article  Google Scholar 

  51. Piela B, Olson TS, Atanassov P, Zelenay P (2010) Highly methanol-tolerant non-precious metal cathode catalysts for direct methanol fuel cell. Electrochim Acta 55:7615–7621. https://doi.org/10.1016/j.electacta.2009.11.085

    Article  CAS  Google Scholar 

  52. Abrego-Martínez JC, Wang Y, Ledesma-García J, Cuevas-Muñiz FM, Arriaga LG, Mohamedi M (2017) A pulsed laser synthesis of nanostructured bi-layer platinum-silver catalyst for methanol-tolerant oxygen reduction reaction. Int J Hydrog Energy 42:28056–28062. https://doi.org/10.1016/j.ijhydene.2017.02.165

    Article  CAS  Google Scholar 

  53. Yuan Z, Yang J, Zhang Y, Zhang X (2015) The optimization of air-breathing micro direct methanol fuel cell using response surface method. Energy 80:340–349. https://doi.org/10.1016/j.energy.2014.11.076

    Article  CAS  Google Scholar 

  54. Falcão DS, Oliveira VB, Rangel CM, Pinto AMFR (2014) Review on micro-direct methanol fuel cells. Renew Sust Energ Rev 34:58–70. https://doi.org/10.1016/j.rser.2014.03.004

    Article  CAS  Google Scholar 

  55. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Léger JM (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283–296. https://doi.org/10.1016/s0378-7753(01)00954-5

    Article  CAS  Google Scholar 

  56. Tiwari JN, Tiwari RN, Singh G, Kim KS (2013) Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2:553–578. https://doi.org/10.1016/j.nanoen.2013.06.009

    Article  CAS  Google Scholar 

  57. Vijh AK (1975) Electrocatalysis of the anodic oxidation of methanol by metals. J Catal 37:410–415. https://doi.org/10.1016/0021-9517(75)90177-3

    Article  CAS  Google Scholar 

  58. Bagotzky VS, Vassiliev YB, Khazova OA (1977) Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals. J Electroanal Chem 81:229–238. https://doi.org/10.1016/S0022-0728(77)80019-3

    Article  Google Scholar 

  59. Antolini E (2009) Palladium in fuel cell catalysis. Energy Environ Sci 2:915–931. https://doi.org/10.1039/b820837a

    Article  CAS  Google Scholar 

  60. Wang H, Xu C, Cheng F, Zhang M, Wang S, Jiang SP (2008) Pd/Pt core-shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Electrochem Commun 10:1575–1578. https://doi.org/10.1016/j.elecom.2008.08.011

    Article  CAS  Google Scholar 

  61. Tripkovic AV, Popovic KD, Grgur BN, Blizanac B, Ross PN, Markovi NM (2002) Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim Acta 47:3707–3714. https://doi.org/10.1016/S0013-4686(02)00340-7

    Article  CAS  Google Scholar 

  62. Demirci UB (2007) Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J Power Sources 173:11–18. https://doi.org/10.1016/j.jpowsour.2007.04.069

    Article  CAS  Google Scholar 

  63. Patel PP, Datta MK, Jampani PH, Hong D, Poston JA, Manivannan A, Kumta PN (2015) High performance and durable nanostructured TiN supported Pt –Ru anode catalyst for direct methanol fuel cell (DMFC). J Power Sources 293:437–446. https://doi.org/10.1016/j.jpowsour.2015.05.051

    Article  CAS  Google Scholar 

  64. Alcaide F, Álvarez G, Cabot PL, Genova-Koleva R, Grande HJ, Miguel O (2017) Effect of the solvent in the catalyst ink preparation on the properties and performance of unsupported PtRu catalyst layers in direct methanol fuel cells. Electrochim Acta 231:529–538. https://doi.org/10.1016/j.electacta.2017.02.127

    Article  CAS  Google Scholar 

  65. Xu C, Cheng L, Shen P, Liu Y (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 9:997–1001. https://doi.org/10.1016/j.elecom.2006.12.003

    Article  CAS  Google Scholar 

  66. Karim NA, Kamarudin SK (2013) An overview on non-platinum cathode catalysts for direct methanol fuel cell. Appl Energy 103:212–220. https://doi.org/10.1016/j.apenergy.2012.09.031

    Article  CAS  Google Scholar 

  67. Mahajan A, Banik S, Roy PS, Chowdhury SR, Bhattacharya SK (2017) Kinetic parameters of anodic oxidation of methanol in alkali: effect of diameter of Pd nano-catalyst, composition of electrode and solution and mechanism of the reaction. Int J Hydrog Energy 42:21263–21278. https://doi.org/10.1016/j.ijhydene.2017.07.058

    Article  CAS  Google Scholar 

  68. Deng H, Zhang Y, Zheng X, Li Y, Zhang X, Liu X (2015) A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol. Energy 82:236–241. https://doi.org/10.1016/j.energy.2015.01.034

    Article  CAS  Google Scholar 

  69. Xue R, Zhang Y, Liu X (2017) A novel cathode gas diffusion layer for water management of passive μ-DMFC. Energy 139:535–541 https://doi.org/10.1016/j.energy.2017.08.016

    Article  CAS  Google Scholar 

  70. Wang M, Liu L, Wang X (2017) A novel proton exchange membrane based on sulfo functionalized porous silicon for monolithic integrated micro direct methanol fuel cells. Sensors Actuators B Chem 253:621–629. https://doi.org/10.1016/j.snb.2017.06.173

    Article  CAS  Google Scholar 

  71. Falcão DS, Pereira JP, Rangel CM, Pinto AMFR (2015) Development and performance analysis of a metallic passive micro-direct methanol fuel cell for portable applications. Int J Hydrog Energy 40:5408–5415. https://doi.org/10.1016/j.ijhydene.2015.01.034

    Article  CAS  Google Scholar 

  72. Falcão DS, Pereira JP, Pinto AMFR (2016) Effect of stainless steel meshes on the performance of passive micro direct methanol fuel cells. Int J Hydrog Energy 41:13859–13867. https://doi.org/10.1016/j.ijhydene.2016.05.059

    Article  CAS  Google Scholar 

  73. Hsieh SS, Ho CC, Hung LC (2016) Performance tests of a double-passive μDMFC stack with parallel/dendrite flow field. Renew Energy 90:28–37. https://doi.org/10.1016/j.renene.2015.12.056

    Article  CAS  Google Scholar 

  74. Zhang Y, Xue R, Zhang X, Song J, Liu X (2015) RGO deposited in stainless steel fiber felt as mass transfer barrier layer for μ-DMFC. Energy 91:1081–1086. https://doi.org/10.1016/j.energy.2015.09.026

    Article  CAS  Google Scholar 

  75. Yuan Z, Zhang M, Zuo K, Ren Y (2018) The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell. Energy 150:28–37 https://doi.org/10.1016/j.energy.2018.02.132

    Article  CAS  Google Scholar 

  76. Deng H, Zhang Y, Li Y, Zhang X, Liu X (2013) A CNT-MEA compound structure of micro-direct methanol fuel cell for water management. Microelectron Eng 110:288–291. https://doi.org/10.1016/j.mee.2013.02.013

    Article  CAS  Google Scholar 

  77. Deng H, Zhang X, Ma Z, Chen H, Sun Q, Zhang Y, Liu X (2014) A micro passive direct methanol fuel cell with high performance via plasma electrolytic oxidation on aluminum-based substrate. Energy 78:149–153. https://doi.org/10.1016/j.energy.2014.09.070

    Article  CAS  Google Scholar 

  78. Zhou Y, Wang X, Guo X, Qiu X, Liu L (2012) A water collecting and recycling structure for silicon-based micro direct methanol fuel cells. Int J Hydrog Energy 37:967–976. https://doi.org/10.1016/j.ijhydene.2011.03.086

    Article  CAS  Google Scholar 

  79. Baranton S, Coutanceau C, Léger JM, Roux C, Capron P (2005) Alternative cathodes based on iron phthalocyanine catalysts for mini- or micro-DMFC working at room temperature. Electrochim Acta 51:517–525. https://doi.org/10.1016/j.electacta.2005.05.010

    Article  CAS  Google Scholar 

  80. Wang SJ, Huo WW, Zou ZQ, Qiao YJ, Yang H (2011) Computational simulation and experimental evaluation on anodic flow field structures of micro direct methanol fuel cells. Appl Therm Eng 31:2877–2884. https://doi.org/10.1016/j.applthermaleng.2011.05.013

    Article  CAS  Google Scholar 

  81. Hashim N, Kamarudin SK, Daud WRW (2009) Design, fabrication and testing of a PMMA-based passive single-cell and a multi-cell stack micro-DMFC. Int J Hydrog Energy 34:8263–8269. https://doi.org/10.1016/j.ijhydene.2009.07.043

    Article  CAS  Google Scholar 

  82. Zhang Q, Wang X, Zhong L, Zhou Y, Qiu X, Liu L (2009) Design, optimization and microfabrication of a micro-direct methanol fuel cell with microblocks in anode structure. Sensors Actuators A Phys 154:247–254. https://doi.org/10.1016/j.sna.2008.07.008

    Article  CAS  Google Scholar 

  83. Lu GQ, Wang CY, Yen TJ, Zhang X (2004) Development and characterization of a silicon-based micro direct methanol fuel cell. Electrochim Acta 49:821–828. https://doi.org/10.1016/j.electacta.2003.09.036

    Article  CAS  Google Scholar 

  84. Yuan Z, Zhang Y, Leng J, Gao Y, Liu X (2012) Development of a 4-cell air-breathing micro direct methanol fuel cell stack. J Power Sources 202:134–142. https://doi.org/10.1016/j.jpowsour.2011.10.090

    Article  CAS  Google Scholar 

  85. Wang Z, Zhang X, Nie L, Zhang Y, Liu X (2014) Elimination of water flooding of cathode current collector of micro passive direct methanol fuel cell by superhydrophilic surface treatment. Appl Energy 126:107–112. https://doi.org/10.1016/j.apenergy.2014.03.029

    Article  CAS  Google Scholar 

  86. Ghayor R, Shakeri M, Sedighi K, Farhadi M (2010) Experimental and numerical investigation on passive and active μDMFC. Int J Hydrog Energy 35:9329–9337 https://doi.org/10.1016/j.ijhydene.2009.09.066

    Article  CAS  Google Scholar 

  87. Seo YH, Cho YH (2009) Micro direct methanol fuel cells and their stacks using a polymer electrolyte sandwiched by multi-window microcolumn electrodes. Sensors Actuators A Phys 150:87–96. https://doi.org/10.1016/j.sna.2008.12.009

    Article  CAS  Google Scholar 

  88. Peng HC, Chen PH, Chen HW, Chieng CC, Yeh TK, Pan C, Tseng FG (2010) Passive cathodic water/air management device for micro-direct methanol fuel cells. J Power Sources 195:7349–7358. https://doi.org/10.1016/j.jpowsour.2010.05.007

    Article  CAS  Google Scholar 

  89. Qiao H, Kunimatsu M, Okada T (2005) Pt catalyst configuration by a new plating process for a micro tubular DMFC cathode. J Power Sources 139:30–34. https://doi.org/10.1016/j.jpowsour.2004.07.003

    Article  CAS  Google Scholar 

  90. Li Y, Zhang X, Nie L, Zhang Y, Liu X (2014) Stainless steel fiber felt as cathode diffusion backing and current collector for a micro direct methanol fuel cell with low methanol crossover. J Power Sources 245:520–528. https://doi.org/10.1016/j.jpowsour.2013.06.122

    Article  CAS  Google Scholar 

  91. Xue R, Sang S, Jin H, Shen Q, Zhang Y, Liu X, Zhang X (2014) Stainless steel fiber felt as the anode diffusion backing and current collector for μ-DMFC. Microelectron Eng 119:159–163. https://doi.org/10.1016/j.mee.2014.02.006

    Article  CAS  Google Scholar 

  92. Fang S, Zhang Y, Ma Z, Zou Y, Liu X (2016) Development of a micro direct methanol fuel cell with heat control. Energy 116:978–985. https://doi.org/10.1016/j.energy.2016.10.034

    Article  CAS  Google Scholar 

  93. Falcão DS, Oliveira VB, Rangel CM, Pinto AMFR (2015) Experimental and modeling studies of a micro direct methanol fuel cell. Renew Energy 74:464–470. https://doi.org/10.1016/j.renene.2014.08.043

    Article  CAS  Google Scholar 

  94. Yuan Z, Yang J, Zhang Y, Wang S, Xu T (2015) Mass transport optimization in the anode diffusion layer of a micro direct methanol fuel cell. Energy 93:599–605. https://doi.org/10.1016/j.energy.2015.09.067

    Article  CAS  Google Scholar 

  95. Yuan Z, Yang J, Li X, Wang S (2016) The micro-scale analysis of the micro direct methanol fuel cell. Energy 100:10–17. https://doi.org/10.1016/j.energy.2016.01.057

    Article  CAS  Google Scholar 

  96. Weinmueller C, Tautschnig G, Hotz N, Poulikakos D (2010) A flexible direct methanol micro-fuel cell based on a metalized, photosensitive polymer film. J Power Sources 195:3849–3857. https://doi.org/10.1016/j.jpowsour.2009.12.092

    Article  CAS  Google Scholar 

  97. Zhong L, Wang X, Jiang Y, Zhang Q, Qiu X, Zhou Y, Liu L (2008) A micro-direct methanol fuel cell stack with optimized design and microfabrication. Sensors Actuators A Phys 143:70–76. https://doi.org/10.1016/j.sna.2007.06.045

    Article  CAS  Google Scholar 

  98. Wang X, Zhu Y, Shen C, Zhou Y, Wu X, Liu L (2012) A novel assembly method using multi-layer bonding technique for micro direct methanol fuel cells and their stack. Sensors Actuators A Phys 188:246–254. https://doi.org/10.1016/j.sna.2012.02.007

    Article  CAS  Google Scholar 

  99. Zhang Y, Zhang P, He H, Zhang B, Yuan Z, Liu X, Cui H (2011) A self-breathing metallic micro-direct methanol fuel cell with the improved cathode current collector. Int J Hydrog Energy 36:857–868. https://doi.org/10.1016/j.ijhydene.2010.10.039

    Article  CAS  Google Scholar 

  100. Hsieh SS, Wu HC, Her BS (2012) Design, fabrication and characterization of micro-electro mechanical system based micro direct methanol fuel cell stacks. Sensors Actuators A Phys 187:57–66. https://doi.org/10.1016/j.sna.2012.08.026

    Article  CAS  Google Scholar 

  101. Zhang B, Zhang Y, He H, Li J, Yuan Z, Na C, Liu X (2010) Development and performance analysis of a metallic micro-direct methanol fuel cell for high-performance applications. J Power Sources 195:7338–7348. https://doi.org/10.1016/j.jpowsour.2010.05.011

    Article  CAS  Google Scholar 

  102. D’Urso C, Baglio V, Antonucci V, Aricò AS, Specchia S, Icardi UA, Saracco G, Spinella C, D’Arrigo G (2011) Development of a planar μDMFC operating at room temperature. Int J Hydrog Energy 36:8088–8093 https://doi.org/10.1016/j.ijhydene.2011.01.109

    Article  Google Scholar 

  103. Deng H, Sang S, Zhang Y, Li Z, Liu X (2013) Investigations of silicon-based air-breathing micro direct methanol fuel cells with different anode flow fields. Microelectron Eng 111:180–184. https://doi.org/10.1016/j.mee.2013.03.143

    Article  CAS  Google Scholar 

  104. Shen M, Walter S, Dovat L, Gijs MAM (2011) Planar micro-direct methanol fuel cell prototyped by rapid powder blasting. Microelectron Eng 88:1884–1886. https://doi.org/10.1016/j.mee.2010.12.079

    Article  CAS  Google Scholar 

  105. Chu YH, Shul YG (2010) Combinatorial investigation of Pt-Ru-Sn alloys as an anode electrocatalysts for direct alcohol fuel cells. Int J Hydrog Energy 35:11261–11270. https://doi.org/10.1016/j.ijhydene.2010.07.062

    Article  CAS  Google Scholar 

  106. Liang J, Luo Y, Zheng S, Wang D (2017) Enhance performance of micro direct methanol fuel cell by in situ CO removal using novel anode flow field with superhydrophobic degassing channels. J Power Sources 351:86–95 https://doi.org/10.1016/j.jpowsour.2017.03.099

    Article  CAS  Google Scholar 

  107. Falcão DS, Silva RA, Rangel CM, AMFR P (2017) Performance of an active micro direct methanol fuel cell using reduced catalyst loading MEAs. Energies 10:1683 https://doi.org/10.3390/en10111683

    Article  Google Scholar 

  108. Cha HY, Choi HG, Nam JD, Lee Y, Cho SM, Lee ES, Lee JK, Chung CH (2004) Fabrication of all-polymer micro-DMFCs using UV-sensitive photoresist. Electrochim Acta 50:795–799. https://doi.org/10.1016/j.electacta.2004.01.117

    Article  CAS  Google Scholar 

  109. Lu Y, Reddy RG (2011) Effect of flow fields on the performance of micro-direct methanol fuel cells. Int J Hydrog Energy 36:822–829. https://doi.org/10.1016/j.ijhydene.2010.10.029

    Article  CAS  Google Scholar 

  110. Yuan Z, Yang J, Li Z, Sun Y, Ye N, Shen H (2015) Analysis of CO transmission in a micro direct methanol fuel cell. Energy 83:496–502 https://doi.org/10.1016/j.energy.2015.02.053

    Article  CAS  Google Scholar 

  111. Yang J, Yuan Z, Shen H, Li X, Di J, Mo J (2016) Influence of anode flow field on mass transport in a air-breathing micro direct methanol fuel cell. Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications, ICIEA 2016, pp 1843–1846

    Google Scholar 

  112. Yuan Z, Zhang Y, Fu W, Wang Z, Zhang X, Liu X (2014) Hydrophilicity effect on micro-scale flow of μDMFC. Microelectron Eng 119:131–136 https://doi.org/10.1016/j.mee.2014.03.024

    Article  CAS  Google Scholar 

  113. Yuan Z, Fu W, Zhao Y, Li Z, Zhang Y, Liu X (2013) Investigation of μDMFC (micro direct methanol fuel cell) with self-adaptive flow rate. Energy 55:1152–1158. https://doi.org/10.1016/j.energy.2013.03.056

    Article  CAS  Google Scholar 

  114. Yao SC, Tang X, Hsieh CC, Alyousef Y, Vladimer M, Fedder GK, Amon CH (2006) Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy 31:636–649. https://doi.org/10.1016/j.energy.2005.10.016

    Article  CAS  Google Scholar 

  115. Kamarudin MZF, Kamarudin SK, Masdar MS, Daud WRW (2013) Review: direct ethanol fuel cells. Int J Hydrog Energy 38:9438–9453. https://doi.org/10.1016/j.ijhydene.2012.07.059

    Article  CAS  Google Scholar 

  116. An L, Zhao TS, Chen R, Wu QX (2011) A novel direct ethanol fuel cell with high power density. J Power Sources 196:6219–6222. https://doi.org/10.1016/j.jpowsour.2011.03.040

    Article  CAS  Google Scholar 

  117. Yang CC, Lee YJ, Chiu SJ, Lee KT, Chien WC, Lin CT, Huang CA (2008) Preparation of a PVA/HAP composite polymer membrane for a direct ethanol fuel cell (DEFC). J Appl Electrochem 38:1329–1337 https://doi.org/10.1007/s10800-008-9563-x

    Article  CAS  Google Scholar 

  118. Yang CC, Chiu SJ, Lee KT, Chien WC, Lin CT, Huang CA (2008) Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. J Power Sources 184:44–51. https://doi.org/10.1016/j.jpowsour.2008.06.011

    Article  CAS  Google Scholar 

  119. Tadanaga K, Furukawa Y, Hayashi A, Tatsumisago M (2010) Direct ethanol fuel cell using hydrotalcite clay as a hydroxide ion conductive electrolyte. Adv Mater 22:4401–4404. https://doi.org/10.1002/adma.201001766

    Article  CAS  PubMed  Google Scholar 

  120. Xu JB, Zhao TS, Shen SY, Li YS (2010) Stabilization of the palladium electrocatalyst with alloyed gold for ethanol oxidation. Int J Hydrog Energy 35:6490–6500. https://doi.org/10.1016/j.ijhydene.2010.04.016

    Article  CAS  Google Scholar 

  121. Xu JB, Zhao TS, Li YS, Yang WW (2010) Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells. Int J Hydrog Energy 35:9693–9700. https://doi.org/10.1016/j.ijhydene.2010.06.074

    Article  CAS  Google Scholar 

  122. Tsang CHA, Leung DYC (2018) Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell. Solid State Sci 75:21–26. https://doi.org/10.1016/j.solidstatesciences.2017.11.005

    Article  CAS  Google Scholar 

  123. ÜnlÜ M, Abbott D, Ramaswamy N, Ren X, Mukerjee S, Kohl PA (2011) Analysis of double layer and adsorption effects at the alkaline polymer electrolyte-electrode interface. J Electrochem Soc 158:B1423–B1431 https://doi.org/10.1149/2.075111jes

    Article  Google Scholar 

  124. Fujiwara N, Siroma Z, Yamazaki S, Ioroi T, Senoh H, Yasuda K (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185:621–626. https://doi.org/10.1016/j.jpowsour.2008.09.024

    Article  CAS  Google Scholar 

  125. Datta J, Dutta A, Biswas M (2012) Enhancement of functional properties of PtPd nano catalyst in metal-polymer composite matrix: application in direct ethanol fuel cell. Electrochem Commun 20:56–59. https://doi.org/10.1016/j.elecom.2012.02.022

    Article  CAS  Google Scholar 

  126. Varela FJR, Savadogo O (2009) Ethanol-tolerant Pt-alloy cathodes for direct ethanol fuel cell (DEFC) applications. Asia-Pacific J Chem Eng 4:17–24 https://doi.org/10.1002/apj.193

    Article  CAS  Google Scholar 

  127. An L, Zhao TS, Xu JB (2011) A bi-functional cathode structure for alkaline-acid direct ethanol fuel cells. Int J Hydrog Energy 36:13089–13095. https://doi.org/10.1016/j.ijhydene.2011.07.025

    Article  CAS  Google Scholar 

  128. Li YS, Zhao TS (2011) A high-performance integrated electrode for anion-exchange membrane direct ethanol fuel cells. Int J Hydrog Energy 36:7707–7713. https://doi.org/10.1016/j.ijhydene.2011.03.090

    Article  CAS  Google Scholar 

  129. An L, Zhao TS (2011) An alkaline direct ethanol fuel cell with a cation exchange membrane. Energy Environ Sci 4:2213–2217 https://doi.org/10.1039/c1ee00002k

    Article  CAS  Google Scholar 

  130. Shen S, Zhao TS, Xu J, Li Y (2011) High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anion-exchange membrane direct ethanol fuel cells. Energy Environ Sci 4:1428–1433. https://doi.org/10.1039/c0ee00579g

    Article  CAS  Google Scholar 

  131. An L, Zhao TS, Zeng L, Yan XH (2014) Performance of an alkaline direct ethanol fuel cell with hydrogen peroxide as oxidant. Int J Hydrog Energy 39:2320–2324. https://doi.org/10.1016/j.ijhydene.2013.11.072

    Article  CAS  Google Scholar 

  132. An L, Zhao TS (2011) Performance of an alkaline-acid direct ethanol fuel cell. Int J Hydrog Energy 36:9994–9999. https://doi.org/10.1016/j.ijhydene.2011.04.150

    Article  CAS  Google Scholar 

  133. Wang ED, Zhao TS, Yang WW (2010) Poly (vinyl alcohol)/3-(trimethylammonium) propyl-functionalized silica hybrid membranes for alkaline direct ethanol fuel cells. Int J Hydrog Energy 35:2183–2189. https://doi.org/10.1016/j.ijhydene.2009.12.179

    Article  CAS  Google Scholar 

  134. Shen SY, Zhao TS, Wu QX (2012) Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment. Int J Hydrog Energy 37:575–582. https://doi.org/10.1016/j.ijhydene.2011.09.077

    Article  CAS  Google Scholar 

  135. Li YS, Zhao TS (2012) Ultra-low catalyst loading cathode electrode for anion-exchange membrane fuel cells. Int J Hydrog Energy 37:15334–15338. https://doi.org/10.1016/j.ijhydene.2012.07.119

    Article  CAS  Google Scholar 

  136. Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132. https://doi.org/10.1016/j.jpowsour.2008.03.075

    Article  CAS  Google Scholar 

  137. Jayashree RS, Spendelow JS, Yeom J, Rastogi C, Shannon MA, Kenis PJA (2005) Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells. Electrochim Acta 50:4674–4682. https://doi.org/10.1016/j.electacta.2005.02.018

    Article  CAS  Google Scholar 

  138. Yeom J, Jayashree RS, Rastogi C, Shannon MA, Kenis PJA (2006) Passive direct formic acid microfabricated fuel cells. J Power Sources 160:1058–1064. https://doi.org/10.1016/j.jpowsour.2006.02.066

    Article  CAS  Google Scholar 

  139. Wang T, Zeng Y, Zhao Z, Guo H (2015) A micro direct formic acid fuel cell with PDMS fluid flow plates. Key Eng Mater 645–646:724–729 https://doi.org/10.4028/www.scientific.net/KEM.645-646.724

    Article  Google Scholar 

  140. Ha S, Adams B, Masel RI (2004) A miniature air breathing direct formic acid fuel cell. J Power Sources 128:119–124. https://doi.org/10.1016/j.jpowsour.2003.09.071

    Article  CAS  Google Scholar 

  141. Cai W, Liang L, Zhang Y, Xing W, Liu C (2013) Real contribution of formic acid in direct formic acid fuel cell: investigation of origin and guiding for micro-structure design. Int J Hydrog Energy 38:212–218 https://doi.org/10.1016/j.ijhydene.2012.09.155

    Article  CAS  Google Scholar 

  142. Rejal SZ, Masdar MS, Kamarudin SK (2014) A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover. Int J Hydrog Energy 39:10267–10274. https://doi.org/10.1016/j.ijhydene.2014.04.149

    Article  CAS  Google Scholar 

  143. Qiao H, Shiroishi H, Okada T (2007) Passive micro tubular direct formic acid fuel cells (DFAFCs) with chemically assembled Pd anode nano-catalysts on polymer electrolytes. Electrochim Acta 53:59–65. https://doi.org/10.1016/j.electacta.2007.01.046

    Article  CAS  Google Scholar 

  144. Jayashree RS, Gancs L, Choban ER, Primak A, Natarajan D, Markoski LJ, Kenis PJA (2005) Air-breathing laminar flow-based microfluidic fuel cell. J Am Chem Soc 127:16758–16759 https://doi.org/10.1021/ja054599k

    Article  CAS  PubMed  Google Scholar 

  145. Shaegh SAM, Nguyen NT, Chan SH (2012) Air-breathing microfluidic fuel cell with fuel reservoir. J Power Sources 209:312–317 https://doi.org/10.1016/j.jpowsour.2012.02.115

    Article  Google Scholar 

  146. Chu KL, Gold S, Subramanian VR, Lu C, Shannon MA, Masel RI (2006) A nanoporous silicon membrane electrode assembly for on-chip micro fuel cell applications. J Microelectromech Syst 15:671–677 https://doi.org/10.1109/JMEMS.2006.872223

    Article  CAS  Google Scholar 

  147. An L, Chen R (2016) Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production. J Power Sources 329:484–501. https://doi.org/10.1016/j.jpowsour.2016.08.105

    Article  CAS  Google Scholar 

  148. An L, Chai ZH, Zeng L, Tan P, Zhao TS (2013) Mathematical modeling of alkaline direct ethanol fuel cells. Int J Hydrog Energy 38:14067–14075. https://doi.org/10.1016/j.ijhydene.2013.08.080

    Article  CAS  Google Scholar 

  149. Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109:4183–4206. https://doi.org/10.1021/cr9000995

    Article  CAS  PubMed  Google Scholar 

  150. Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Electro-oxidation of methanol and ethylene glycol on platinum in alkaline solution: poisoning effects and product analysis. Electrochim Acta 51:1085–1090. https://doi.org/10.1016/j.electacta.2005.06.002

    Article  CAS  Google Scholar 

  151. Ma S, Sadakiyo M, Luo R, Heima M, Yamauchi M, Kenis PJA (2016) One-step electrosynthesis of ethylene and ethanol from CO in an alkaline electrolyzer. J Power Sources 301:219–228 https://doi.org/10.1016/j.jpowsour.2015.09.124

    Article  CAS  Google Scholar 

  152. Zheng MY, Wang AQ, Ji N, Pang JF, Wang XD, Zhang T (2010) Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. ChemSusChem 3:63–66. https://doi.org/10.1002/cssc.200900197

    Article  CAS  PubMed  Google Scholar 

  153. Arjona N, Palacios A, Moreno-Zuria A, Guerra-Balcázar M, Ledesma-Garcia J, Arriaga LG (2014) AuPd/polyaniline as the anode in an ethylene glycol microfluidic fuel cell operated at room temperature. Chem Commun 50:8151–8153. https://doi.org/10.1039/c4cc03288h

    Article  CAS  Google Scholar 

  154. Maya-Cornejo J, Ortiz-Ortega E, Álvarez-Contreras L, Arjona N, Guerra-Balcázar M, Ledesma-García J, Arriaga LG (2015) Copper–palladium core–shell as an anode in a multi-fuel membraneless nanofluidic fuel cell: toward a new era of small energy conversion devices. Chem Commun 51:2536–2539 https://doi.org/10.1039/c4cc08529a

    Article  CAS  Google Scholar 

  155. Martins CA, Ibrahim OA, Pei P, Kjeang E (2018) Towards a fuel-flexible direct alcohol microfluidic fuel cell with flow-through porous electrodes: assessment of methanol, ethylene glycol and glycerol fuels. Electrochim Acta 271:537–543 https://doi.org/10.1016/j.electacta.2018.03.197

    Article  CAS  Google Scholar 

  156. An L, Zeng L, Zhao TS (2013) An alkaline direct ethylene glycol fuel cell with an alkali-doped polybenzimidazole membrane. Int J Hydrog Energy 38:10602–10606. https://doi.org/10.1016/j.ijhydene.2013.06.042

    Article  CAS  Google Scholar 

  157. An L, Zhao TS, Shen SY, Wu QX, Chen R (2010) Performance of a direct ethylene glycol fuel cell with an anion-exchange membrane. Int J Hydrog Energy 35:4329–4335. https://doi.org/10.1016/j.ijhydene.2010.02.009

    Article  CAS  Google Scholar 

  158. Anitha M, Kamarudin SK, Kofli NT (2016) The potential of glycerol as a value-added commodity. Chem Eng J 295:119–130. https://doi.org/10.1016/j.cej.2016.03.012

    Article  CAS  Google Scholar 

  159. Palma LM, Almeida TS, Morais C, Napporn TW, Kokoh KB, de Andrade AR (2017) Effect of the Co-catalyst on the selective electrooxidation of glycerol over ruthenium based nanomaterials. ChemElectroChem 4:39–45 https://doi.org/10.1002/celc.201600406

    Article  CAS  Google Scholar 

  160. Simões M, Baranton S, Coutanceau C (2012) Electrochemical valorisation of glycerol. ChemSusChem 5:2106–2124. https://doi.org/10.1002/cssc.201200335

    Article  CAS  PubMed  Google Scholar 

  161. Kwon Y, Hersbach TJP, Koper MTM (2014) Electro-oxidation of glycerol on platinum modified by adatoms: activity and selectivity effects. Top Catal 57:1272–1276. https://doi.org/10.1007/s11244-014-0292-6

    Article  CAS  Google Scholar 

  162. Livshits V, Peled E (2006) Progress in the development of a high-power, direct ethylene glycol fuel cell (DEGFC). J Power Sources 161:1187–1191. https://doi.org/10.1016/j.jpowsour.2006.04.141

    Article  CAS  Google Scholar 

  163. Maya-Cornejo J, Guerra-Balcázar M, Arjona N, Álvarez-Contreras L, FJR V, Gurrola MP, Ledesma-García J, Arriaga LG (2016) Electrooxidation of crude glycerol as waste from biodiesel in a nanofluidic fuel cell using Cu@Pd/C and Cu@Pt/C. Fuel 183:195–205 https://doi.org/10.1016/j.fuel.2016.06.075

    Article  CAS  Google Scholar 

  164. Dector A, Cuevas-Muñiz FM, Guerra-Balcázar M, Godínez LA, Ledesma-García J, Arriaga LG (2013) Glycerol oxidation in a microfluidic fuel cell using Pd/C and Pd/MWCNT anodes electrodes. Int J Hydrog Energy 38:12617–12622. https://doi.org/10.1016/j.ijhydene.2012.12.030

    Article  CAS  Google Scholar 

  165. Noh HB, Naveen MH, Choi YJ, Choe ES, Shim YB (2015) Implantable nonenzymatic glucose/O micro film fuel cells assembled with hierarchical AuZn electrodes. Chem Commun 51:6659–6662 https://doi.org/10.1039/c5cc01567g

    Article  CAS  Google Scholar 

  166. Santiago Ó, Navarro E, Raso MA, Leo TJ (2016) Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts. Appl Energy 179:497–522. https://doi.org/10.1016/j.apenergy.2016.06.136

    Article  CAS  Google Scholar 

  167. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kerzenmacher S, Ducrée J, Zengerle R, von Stetten F (2008) Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J Power Sources 182:1–17. https://doi.org/10.1016/j.jpowsour.2008.03.031

    Article  CAS  Google Scholar 

  169. Rapoport BI, Kedzierski JT, Sarpeshkar R (2012) A glucose fuel cell for implantable brain-machine interfaces. PLoS One 7:1–15. https://doi.org/10.1371/journal.pone.0038436

    Article  CAS  Google Scholar 

  170. Oncescu V, Erickson D (2013) High volumetric power density, non-enzymatic, glucose fuel cells. Sci Rep 3:1226. https://doi.org/10.1038/srep01226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Drake RF, Messinger S, Matsuda S, Kusserow BK (1970) A tissue implantable fuel cell power supply. Trans Am Soc Artif Intern Organs 16:199–205

    CAS  PubMed  Google Scholar 

  172. Jiang T, Yan L, Meng Y, Xiao M, Wu Z, Tsiakaras P, Song S (2015) Glucose electrooxidation in alkaline medium: performance enhancement of PdAu/C synthesized by NH modified pulse microwave assisted polyol method. Appl Catal B Environ 162:275–281 https://doi.org/10.1016/j.apcatb.2014.06.045

    Article  CAS  Google Scholar 

  173. Mahoney EG, Sheng W, Cheng M, Lee KX, Yan Y, Chen JG (2016) Analyzing the electrooxidation of ethylene glycol and glucose over platinum-modified gold electrocatalysts in alkaline electrolyte using in-situ infrared spectroscopy. J Power Sources 305:89–96. https://doi.org/10.1016/j.jpowsour.2015.11.059

    Article  CAS  Google Scholar 

  174. Brouzgou A, Song S, Tsiakaras P (2014) Carbon-supported PdSn and Pd Sn anodes for glucose electrooxidation in alkaline media. Appl Catal B Environ 158–159:209–216 https://doi.org/10.1016/j.apcatb.2014.03.051

    Article  Google Scholar 

  175. Elouarzaki K, Le Goff A, Holzinger M, Thery J, Cosnier S (2012) Electrocatalytic oxidation of glucose by rhodium porphyrin-functionalized MWCNT electrodes: application to a fully molecular catalyst-based glucose/O fuel cell. J Am Chem Soc 134:14078–14085 https://doi.org/10.1021/ja304589m

    Article  CAS  PubMed  Google Scholar 

  176. Kloke A, Köhler C, Zengerle R, Kerzenmacher S (2012) Porous platinum electrodes fabricated by cyclic electrodeposition of PtCu alloy: application to implantable glucose fuel cells. J Phys Chem C 116:19689–19698. https://doi.org/10.1021/jp306168t

    Article  CAS  Google Scholar 

  177. Frei M, Erben J, Martin J, Zengerle R, Kerzenmacher S (2017) Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids. J Power Sources 362:168–173. https://doi.org/10.1016/j.jpowsour.2017.07.001

    Article  CAS  Google Scholar 

  178. Hu C, Song L, Zhang Z, Chen N, Feng Z, Qu L (2015) Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy Environ Sci 8:31–54 https://doi.org/10.1039/c4ee02594f

    Article  CAS  Google Scholar 

  179. Dai L, Chang DW, Baek J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130–1166. https://doi.org/10.1002/smll.201101594

    Article  CAS  PubMed  Google Scholar 

  180. Do UP, Seland F, Maharbiz MM, Wang K, Johannesen Ø, Johannessen EA (2016) Thin film nanoporous electrodes for the selective catalysis of oxygen in abiotically catalysed micro glucose fuel cells. J Mater Sci 51:9095–9107. https://doi.org/10.1007/s10853-016-0162-7

    Article  CAS  Google Scholar 

  181. Kerzenmacher S, Ducrée J, Zengerle R, von Stetten F (2008) An abiotically catalyzed glucose fuel cell for powering medical implants: reconstructed manufacturing protocol and analysis of performance. J Power Sources 182:66–75. https://doi.org/10.1016/j.jpowsour.2008.03.049

    Article  CAS  Google Scholar 

  182. Oncescu V, Erickson D (2011) A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices. J Power Sources 196:9169–9175. https://doi.org/10.1016/j.jpowsour.2011.06.100

    Article  CAS  Google Scholar 

  183. Kerzenmacher S, Schroeder M, Brämer R, Zengerle R, von Stetten F (2010) Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: nickel-free glucose oxidation anodes. J Power Sources 195:6516–6523. https://doi.org/10.1016/j.jpowsour.2010.04.039

    Article  CAS  Google Scholar 

  184. Kerzenmacher S, Kräling U, Metz T, Zengerle R, Von Stetten F (2011) A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability. J Power Sources 196:1264–1272. https://doi.org/10.1016/j.jpowsour.2010.08.019

    Article  CAS  Google Scholar 

  185. Kerzenmacher S, Kräling U, Schroeder M, Brämer R, Zengerle R, von Stetten F (2010) Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: glucose-tolerant oxygen reduction cathodes. J Power Sources 195:6524–6531. https://doi.org/10.1016/j.jpowsour.2010.04.049

    Article  CAS  Google Scholar 

  186. Kloke A, Köhler C, Gerwig R, Zengerle R, Kerzenmacher S (2012) Cyclic electrodeposition of PtCu alloy: facile fabrication of highly porous platinum electrodes. Adv Mater 24:2916–2921. https://doi.org/10.1002/adma.201200806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kloke A, Köhler C, Dryzga A, Gerwig R, Schumann K, Ade M, Zengerle R, Kerzenmacher S (2013) Fabrication of highly porous platinum by cyclic electrodeposition of PtCu alloys: how do process parameters affect morphology. J Electrochem Soc 160:D111–D118 https://doi.org/10.1149/2.001304jes

    Article  CAS  Google Scholar 

  188. Köhler C, Kloke A, Drzyzga A, Zengerle R, Kerzenmacher S (2013) Fabrication of highly porous platinum electrodes for micro-scale applications by pulsed electrodeposition and dealloying. J Power Sources 242:255–263. https://doi.org/10.1016/j.jpowsour.2013.05.035

    Article  CAS  Google Scholar 

  189. Frei M, Köhler C, Dietel L, Martin J, Wiedenmann F, Zengerle R, Kerzenmacher S (2018) Pulsed electro-deposition of highly porous Pt-alloys for use in methanol, formic acid, and glucose fuel cells. ChemElectroChem 5:1013–1023 https://doi.org/10.1002/celc.201800035

    Article  CAS  Google Scholar 

  190. Qazzazie D, Yurchenko O, Urban S, Kieninger J, Urban G (2017) Platinum nanowires anchored on graphene-supported platinum nanoparticles as a highly active electrocatalyst towards glucose oxidation for fuel cell applications. Nanoscale 9:6436–6447 https://doi.org/10.1039/c7nr01391d

    Article  CAS  PubMed  Google Scholar 

  191. Yang YJ, Li W, Zi J (2013) Mechanistic study of glucose oxidation on copper sulfide modified glassy carbon electrode. Electrochem Commun 34:304–307. https://doi.org/10.1016/j.elecom.2013.07.012

    Article  CAS  Google Scholar 

  192. Kloke A, Biller B, Krälling U, Kerzenmacher S, Zengerle R, Von Stetten F (2011) A single layer glucose fuel cell intended as power supplying coating for medical implants. Fuel Cells 11:316–326. https://doi.org/10.1002/fuce.201000114

    Article  CAS  Google Scholar 

  193. Köhler C, Frei M, Zengerle R, Kerzenmacher S (2014) Performance loss of a Pt-based implantable glucose fuel cell in simulated tissue and cerebrospinal fluids. ChemElectroChem 1:1895–1900. https://doi.org/10.1002/celc.201402138

    Article  CAS  Google Scholar 

  194. Yang L, Zhang Y, Chu M, Deng W, Tan Y, Ma M, Su X, Xie Q, Yao S (2014) Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell. Biosens Bioelectron 52:105–110. https://doi.org/10.1016/j.bios.2013.08.038

    Article  CAS  PubMed  Google Scholar 

  195. Slaughter G, Sunday J (2014) A membraneless single compartment abiotic glucose fuel cell. J Power Sources 261:332–336. https://doi.org/10.1016/j.jpowsour.2014.03.090

    Article  CAS  Google Scholar 

  196. Sharma T, Hu Y, Stoller M, Feldman M, Ruoff RS, Ferrari M, Zhang X (2011) Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells. Lab Chip 11:2460–2465. https://doi.org/10.1039/c1lc20119k

    Article  CAS  PubMed  Google Scholar 

  197. Köhler C, Bleck L, Frei M, Zengerle R, Kerzenmacher S (2015) Poisoning of highly porous platinum electrodes by amino acids and tissue fluid constituents. ChemElectroChem 2:1785–1793. https://doi.org/10.1002/celc.201500215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, R., Santander, J., Rego, R. (2018). Overview of Direct Liquid Oxidation Fuel Cells and its Application as Micro-Fuel Cells. In: Rodríguez-Varela, F., Napporn, T. (eds) Advanced Electrocatalysts for Low-Temperature Fuel Cells . Springer, Cham. https://doi.org/10.1007/978-3-319-99019-4_4

Download citation

Publish with us

Policies and ethics