Skip to main content

Geometric and Topological Modelling of Organs and Vascular Structures from CT Data

  • Chapter
  • First Online:
  • 379 Accesses

Abstract

Automatic segmentation of organs in CT scans is a field of rising interest for the generation of 3D models that can help surgery planning, training and support during surgical procedures. However, the reconstruction and visualization of 3D models of organs with vascular structures present several modelling problems. In this chapter, we review these problems and describe a methodology that allows for the reconstruction to be automatic. In particular this chapter describes and illustrates: how to transform and extract 3D geometry from sets of planar contours/polygons annotated on DICOM images, a solution for enforcing polygon vertex order consistency, polygon triangulation by ear clipping and respective inner angle calculation for irregular polygons, a polygon tiling algorithm for stitching contours in adjacent slices, a file format for storing multiple polygons per slice and support for storing their correspondences with other polygons in other slices. Finally, we show how these algorithms can be used together to build different reconstruction solutions: surface-based reconstruction for organs with simple topology, composite surfaces for organs with branching, single surface with branching and polygon extrusion for topologically complex vascular structures. We conclude by showing how organs and vascular structures can be viewed together using transparency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Meyers, Reconstruction of Surfaces from Planar Contours, Ph.D. Thesis, University of Washington, 1994

    Google Scholar 

  2. J.C. Nebel, in Deformable Avatars. IFIP—The International Federation for Information Processing, ed. by N. Magnenat-Thalmann, D. Thalmann. Soft Tissue Modelling from 3D Scanned Data, vol 68 (Springer, Boston, MA, 2001). https://doi.org/10.1007/978-0-306-47002-8_8

    Chapter  Google Scholar 

  3. J.F. Oliveira, D. Zhang, B. Spanlang, B. Buxton, Animating scanned human models. J. WSCG 11(2), 362–369 (2003). ISSN: 1213-6972

    Google Scholar 

  4. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Addison-Wesley Publishing Company, Boston, MA, 1992)

    Google Scholar 

  5. N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  6. V. Leonardi, V. Vidal, J.-L. Mari, M. Daniel, in 3D Reconstruction from CT-Scan Volume Dataset Application to Kidney Modeling. Proceedings of the 27th Spring Conference on Computer Graphics (SCCG ’11) (2011), pp. 111–120. doi:https://doi.org/10.1145/2461217.2461239

  7. S. Luo, X. Li, J. Li, Review on the methods of automatic liver segmentation from abdominal images. J. Comput. Commun. 2(2), 1–7 (2014). https://doi.org/10.4236/jcc.2014.22001

    Article  CAS  Google Scholar 

  8. A. Gotra, L. Sivakumaran, G. Chartrand, K.N. Vu, F. Vandenbroucke-Menu, C. Kauffmann, S. Kadoury, B. Gallix, J.A. de Guise, A. Tang, Liver segmentation: indications, techniques and future directions. Insights Imaging 8(4), 377–392 (2017). https://doi.org/10.1007/s13244-017-0558-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. G. Tsechpenakis, in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, ed. by A. S. El-Baz, U. R. Acharya, M. Mirmehdi, J. S. Suri. Deformable Model-Based Medical Image Segmentation, vol 1 (Springer-Verlag, New York, 2011), pp. 33–67. https://doi.org/10.1007/978-1-4419-8195-0

    Chapter  Google Scholar 

  10. M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  11. X. Xie, M. Mirmehdi, MAC: magnetostatic active contour model. IEEE TPAMI 30(4), 632–646 (2008). https://doi.org/10.1109/TPAMI.2007.70737

    Article  Google Scholar 

  12. T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham, Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995). https://doi.org/10.1006/cviu.1995.1004

    Article  Google Scholar 

  13. T.F. Cootes, C.J. Taylor, Statistical Models of Appearance for Computer Vision (Imaging Science and Biomedical Engineering, University of Manchester, Manchester, UK, 2004). Tech Report

    Google Scholar 

  14. S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988). https://doi.org/10.1016/0021-9991(88)90002-2

    Article  Google Scholar 

  15. Z. Ma, J.M.R.S. Tavares, R.N. Jorge, T. Mascarenhas, A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput. Methods Biomech. Biomed. Eng. 13(2), 235–246 (2010). https://doi.org/10.1080/10255840903131878

    Article  Google Scholar 

  16. S. Ghose, A. Oliver, R. Martí, X. Lladó, J. Vilanova, J. Freixenet, J. Mitra, D. Sidibé, F. Meriaudeau, A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comput. Methods Programs Biomed. 108(1), 262–287 (2012). https://doi.org/10.1016/j.cmpb.2012.04.006

    Article  PubMed  Google Scholar 

  17. P.P.R. Filho, P.C. Cortez, A.C. da Silva Barros, V.H.C. Albuquerque, J.M.R.S. Tavares, Novel and powerful 3D adaptive crisp active contour method applied in the segmentation of CT lung images. Med. Image Anal. 35, 503–516 (2017). https://doi.org/10.1016/j.media.2016.09.002

    Article  Google Scholar 

  18. D.A.B. Oliveira, R.Q. Feitosa, M.M. Correia, Segmentation of liver, its vessels and lesions from CT images for surgical planning. Biomed. Eng. Online (2011). https://doi.org/10.1186/1475-925X-10-30

  19. M. Archana, S. Ramakrishnan, Segmentation of CT liver images using phase based level set method. Biomed. Sci. Instrum. 49, 7–12 (2013)

    CAS  PubMed  Google Scholar 

  20. A. Zidan, N.I. Ghali, A.e. Hassamen, H. Hefny, in Level Set-Based CT Liver Image Segmentation with Watershed and Artificial Neural Networks. 12th International Conference on Hybrid Intelligent Systems (HIS) (2012), pp. 96–102. https://doi.org/10.1109/HIS.2012.6421316

  21. X. Wang, J. Yang, D. Ai, Y. Zheng, S. Tang, Y. Wang, Adaptive Mesh Expansion Model (AMEM) for liver segmentation from CT image. PLoS One (2015). https://doi.org/10.1371/journal.pone.0118064

  22. T. Heimann, H.P. Meinzer, Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009). https://doi.org/10.1016/j.media.2009.05.004

    Article  PubMed  Google Scholar 

  23. B. Tsagaan, A. Shimizu, H. Kobatake, K. Miyakawa, in Medical Image Computing and Computer-Assisted Intervention, ed. by D. Takeyoshi, R. Kikinis. An Automated Segmentation Method of Kidney Using Statistical Information (Springer, Berlin, Heidelberg, 2002), pp. 556–563

    Google Scholar 

  24. A. Skalski, J. Jakubowski, T. Drewniak, in Kidney Tumor Segmentation and Detection on Computed Tomography Data. IEEE International Conference on Imaging Systems and Techniques (IST) (2016). https://doi.org/10.1109/IST.2016.7738230

  25. K.H. Zou, S.K. Warfield, A. Bharatha, C.M.C. Tempany, M.R. Kaus, S.J. Haker, W.M. Wells III, F.A. Jolesz, R. Kikinis, Statistical validation of image segmentation quality based on a spatial overlap index. Acad. Radiol. 11(2), 178–189 (2004). https://doi.org/10.1016/S1076-6332(03)00671-8

    Article  PubMed  PubMed Central  Google Scholar 

  26. G.C. Lin, W.J. Wang, C.M. Wang, S.Y. Sun, Automated classification of multispectral MR images using Linear Discriminant Analysis. Comput. Med. Imaging Graph. 34(4), 251–268 (2010). https://doi.org/10.1016/j.compmedimag.2009.11.001

    Article  PubMed  Google Scholar 

  27. W. Bieniecki, S. Grabowski, in Nearest Neighbor Classifiers for Color Image Segmentation. Proceedings of the International Conference Modern Problems of Radio Engineering, Telecommunications and Computer Science (2004), pp. 209–212

    Google Scholar 

  28. C. Cortes, V. Vapnik, Support vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Google Scholar 

  29. D.S. Jodas, A.S. Pereira, J.M.R.S. Tavares, A review of computational methods applied for identification and quantification of atherosclerotic plaques in images. Expert Syst. Appl. 46, 1–14 (2016). https://doi.org/10.1016/j.eswa.2015.10.016

    Article  Google Scholar 

  30. İ. Dağ, B. Saka, D. Irk, Galerkin method for the numerical solution of the RLW equation using quintic B-splines. J. Comput. Appl. Math. 190(1–2), 532–547 (2006). https://doi.org/10.1016/j.cam.2005.04.026

    Article  Google Scholar 

  31. F. Khalifa, M. Abou El-Ghar, B. Abdollahi, H.B. Frieboes, T. El-Diasty, A. El-Baz, A comprehensive non-invasive framework for automated evaluation of acute renal transplant rejection using DCE-MRI. NMR Biomed. 26(11), 1460–1470 (2013). https://doi.org/10.1002/nbm.2977

    Article  PubMed  Google Scholar 

  32. J.-W. Xu, K. Suzuki, in Computer-Aided Detection of Hepatocellular Carcinoma in Hepatic CT: False Positive Reduction with Feature Selection. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (2011), pp. 1097–1100. https://doi.org/10.1109/ISBI.2011.5872592

  33. Q. Dou, H. Chen, Y. Jin, L. Yu, J. Qin, P.-A. Heng, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, Lecture Notes in Computer Science, ed. by S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, W. Wells. 3D Deeply Supervised Network for Automatic Liver Segmentation from CT Volumes, vol 9901 (Springer, Cham, 2016), pp. 149–157. https://doi.org/10.1007/978-3-319-46723-8_18

    Chapter  Google Scholar 

  34. H. Madero Orozco, O.O. Vergara Villegas, V.G. Cruz Sánchez, H. J. Ochoa Domínguez, M. J. Nandayapa Alfaro, Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Biomed. Eng. Online 14, 9 (2015). https://doi.org/10.1186/s12938-015-0003-y

  35. Y. Wang, G. Morrell, M.E. Heibrun, A. Payne, D.L. Parker, 3D multi-parametric breast MRI Segmentation using hierarchical support vector machine with coil sensitivity correction. Acad. Radiol. 20(2), 137–147 (2013). https://doi.org/10.1016/j.acra.2012.08.016

    Article  PubMed  Google Scholar 

  36. Y.-C. Lin, J.-L. Wu, I.-C. Lee, C.-H. Wu, A. Kumar, K.-C.J. Liu, Y.-Y. Wang, CT image segmentation with supervised clustering using hierarchical support vector machines. Int. J. Comput. Consum. Control 5(2), 41–49 (2016)

    Google Scholar 

  37. Z. Ma, J.M.R.S. Tavares, R. M. Natal Jorge, in A Review on the Current Segmentation Algorithms for Medical Images. International Conference on Computer Imaging Theory and Applications (2009), pp. 135–140

    Google Scholar 

  38. A. Rosebrock, Deep Learning for Computer Vision with Python. Pyimagesearch (2017)

    Google Scholar 

  39. N.R. Pal, S.K. Pal, A review on image segmentation techniques. Pattern Recogn. 26(9), 1277–1294 (1993). https://doi.org/10.1016/0031-3203(93)90135-J

    Article  Google Scholar 

  40. A. Das, S.K. Sabut, Kernelized fuzzy C-means clustering with adaptive thresholding for segmenting liver tumors. Procedia Comput. Sci. 92, 389–395 (2016). https://doi.org/10.1016/j.procs.2016.07.395

    Article  Google Scholar 

  41. H. Song, W. Kang, Q. Zhang, S. Wang, Kidney segmentation in CT sequences using SKFCM and improved GrowCut algorithm. BMC Syst. Biol. 9(Suppl 5), S5 (2015). https://doi.org/10.1186/1752-0509-9-S5-S5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. D. Shen, G. Wu, H.-I. Suk, Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017). https://doi.org/10.1146/annurev-bioeng-071516-044442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Y. Liu, K. Gadepalli, M. Norouzi, G.E. Dahl, T. Kohlberger, A. Boyko, S. Venugopalan, A. Timofeev, P.Q. Nelson, G.S. Corrado, J.D. Hipp, Detecting Cancer Metastases on Gigapixel Pathology Images. arXiv preprint arXiv:1703.02442 (2017)

    Google Scholar 

  44. T. Heimann, B. van Ginneken, M.A. Styner, Y. Arzhaeva, V. Aurich, C. Bauer, A. Beck, C. Becker, R. Beichel, G. Bekes, F. Bello, G. Binnig, H. Bischof, A. Bornik, P.M. Cashman, Y. Chi, A. Cordova, B.M. Dawant, M. Fidrich, J.D. Furst, D. Furukawa, L. Grenacher, J. Hornegger, D. Kainmüller, R.I. Kitney, H. Kobatake, H. Lamecker, T. Lange, J. Lee, B. Lennon, R. Li, S. Li, H.P. Meinzer, G. Nemeth, D.S. Raicu, A.M. Rau, E.M. van Rikxoort, M. Rousson, L. Rusko, K.A. Saddi, G. Schmidt, D. Seghers, A. Shimizu, P. Slagmolen, E. Sorantin, G. Soza, R. Susomboon, J.M. Waite, A. Wimmer, I. Wolf, Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009). https://doi.org/10.1109/TMI.2009.2013851

    Article  PubMed  Google Scholar 

  45. Sliver, Sliver (2018). http://www.sliver07.org

  46. C.L. Bajaj, E.J. Coyle, K.-N. Lin, Arbitrary topology shape reconstruction from planar cross sections. Graph. Models Image Process. 58(6), 524–543 (1996). https://doi.org/10.1006/gmip.1996.0044

    Article  Google Scholar 

  47. H.N. Christiansen, T.W. Sederberg, in Conversion of Complex Contour Line Definitions into Polygonal Element Mosaics. SIGGRAPH ’78 (1978), pp. 187–192. https://doi.org/10.1145/965139.807388

  48. ITK, ITK-SNAP (2018). http://www.itksnap.org

  49. J. Shen, D. Thalmann, in Interactive Shape Design Using Metaballs and Splines. Proc. Eurographics Workshop on Implicit Surfaces ’95 (1995), pp. 187–196

    Google Scholar 

  50. W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit, 4th edn. (Kitware, New York, 2006)

    Google Scholar 

  51. IGSTK, The Image Guided Surgery Toolkit (2018). http://www.igstk.org

  52. J.F. Oliveira, J.L. Moyano-Cuevas, J.B. Pagador, H. Capote, F.M. Sánchez-Margallo, Preoperative and intraoperative spatial reasoning support with 3D organ and vascular models: derived from CT data using VTK and IGSTK. Int. J. Creat. Interfaces Comput. Graph. 6(2), 56–82 (2015). ISSN: 1947-3117

    Article  Google Scholar 

  53. D. Eberly, Triangulation by Ear Clipping (2008). http://www.geometrictools.com

  54. O.S. Pianykh, Digital Imaging and Communications in Medicine (DICOM) A Practical Introduction and Survival Guide, 2nd edn. (Springer, Heidelberg, 2012). ISBN: 978-3-642-10849-5

    Google Scholar 

  55. IGSTK, DICOM Data Orientation (2018). https://public.kitware.com/IGSTKWIKI/index.php/DICOM_data_orientation

  56. B. Braden, The surveyor’s area formula. Coll. Math. J. 17(4), 326–337 (1986)

    Article  Google Scholar 

  57. A. Gueziec, Surface simplification inside a tolerance volume. Technical Report, Yorktown Heights, NY 10598, March 1996. IBM Research Report RC 20440 (1996)

    Google Scholar 

  58. J.F. Oliveira, M. Ziebart, J. Iliffe, J. Turner, S. Robson, Trixel Buffer Logic for I/O bound point in N-polygon inclusion tests of massive bathymetric data. J. WSCG 21(1), 79–88 (2013). ISSN: 1213-6972

    Google Scholar 

  59. J.F. Oliveira, Surface vs volume based reconstruction of bone tissue using CAS_Annotate and CAS_Navigate. J. Biomed. Eng. Med. Imaging., ISSN: 2055-1266 4(5), 19–26 (2017). https://doi.org/10.14738/jbemi.45.3771

    Article  Google Scholar 

  60. Stanford University, The Stanford 3D Scanning Repository (2018). http://graphics.stanford.edu/data/3Dscanrep/. Last accessed 20 Jan 2018

  61. P.R.G. Bak, A.J.B. Mill, in Three Dimensional Applications in Geographical Information Systems, ed. by J. Raper. Three Dimensional Representation in a Geoscientific Resource Management System for the Minerals Industry (Taylor & Francis, Inc., Bristol, PA, 1989), p. 162

    Google Scholar 

  62. C.T. Yeo, A. MacDonald, T. Ungi, A. Lasso, D. Jalink, B. Zevin, G. Fichtinger, S. Nanji, Utility of 3D reconstruction of 2D liver computed tomography/magnetic resonance images as a surgical planning tool for residents in liver resection surgery. J. Surg. Educ. (2017). https://doi.org/10.1016/j.jsurg.2017.07.031

Download references

Acknowledgements

This work was partially funded by Programa de Cooperación Transfronteriza España Portugal (POCTEP) and Fondo Europeo de Desarrollo Regional (FEDER) Reference code: 0401_RITECA_II_4_E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Fradinho Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, J.F., Pagador, J.B., Moyano-Cuevas, J.L., Sánchez-Margallo, F.M., Capote, H. (2018). Geometric and Topological Modelling of Organs and Vascular Structures from CT Data. In: Abreu de Souza, M., Remigio Gamba, H., Pedrini, H. (eds) Multi-Modality Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-98974-7_9

Download citation

Publish with us

Policies and ethics