Skip to main content

The Radiopharmaceutical Chemistry of Alpha-Emitting Radionuclides

  • Chapter
  • First Online:
Radiopharmaceutical Chemistry

Abstract

α-Emitting radionuclides have radiobiological properties that make them particularly attractive for the therapy of a number of difficult-to-treat diseases—such as cancers that are blood-borne or disseminated throughout the body—as well as residual cancer remaining after surgery. While there are many α-emitting radionuclides in nature, only ten have been identified as potentially useful for medical applications. And unfortunately, most of the members of this useful subset are difficult to obtain or are very expensive to produce. Despite these limitations, however, the enticing prospect of using these radionuclides to address medically unmet needs has prompted efforts to attach them to disease-targeting vectors and test their therapeutic efficacy in animal models of disease. Both metallic and non-metallic α-emitting radionuclides have been explored for targeted therapy, and as such, a variety of approaches to incorporating these radionuclides into targeting vectors have been developed, including direct covalent modification and the use of bifunctional chelators. While a fair number of bifunctional chelators have been developed, only a handful—e.g. CHX-A″-DTPA, DOTA, and HOPO—can be used for both α-emitters and radionuclides with imaging properties. In contrast, one of the α-emitting radionuclides that is not readily chelated, 211At, can be attached to disease-targeting agents through efficient electrophilic aromatic substitution reactions using trialkylstannyl intermediates or direct labeling on aromatic boron cage moieties. Radiopharmaceuticals containing α-emitting radionuclides are undergoing preclinical investigations for treatment of a number of cancers as well as the treatment of drug-resistant bacterial and viral infections. Furthermore, an α-emitting radiopharmaceutical—223RaCl2 (Xofigo™; Bayer HealthCare Pharmaceuticals, Inc., Whippany NJ, USA)—is an FDA-approved product, and several other radiopharmaceuticals containing α-emitting radionuclides have progressed to clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaidyanathan G, Zalutsky MR. Targeted therapy using alpha emitters. Phys Med Biol. 1996;41(10):1915–31.

    Article  CAS  PubMed  Google Scholar 

  2. McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med. 1998;25(9):1341–51.

    Article  CAS  PubMed  Google Scholar 

  3. Brechbiel MW. Targeted alpha-therapy: past, present, future? Dalton Trans. 2007;43:4918–28.

    Article  CAS  Google Scholar 

  4. Mulford DA, Scheinberg DA, Jurcic JG. The promise of targeted alpha-particle therapy. J Nucl Med. 2005;46(Suppl 1):199S–204S.

    PubMed  Google Scholar 

  5. Couturier O, Supiot S, Degraef-Mougin M, Faivre-Chauvet A, Carlier T, Chatal JF, et al. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging. 2005;32(5):601–14.

    Article  CAS  PubMed  Google Scholar 

  6. Wadas TJ, Pandya DN, Sai KKS, Mintz A. Molecular targeted alpha-particle therapy for oncologic applications. Am J Roentgenol. 2014;203(2):253–60.

    Article  Google Scholar 

  7. Cleaves MA. Radium: with a preliminary note on radium rays in the treatment of cancer. Med Rec. 1903;64(16):601–6.

    Google Scholar 

  8. Newcomet WS. Internal administration of radium. In: Radium and radiotherapy: radium, thorium, and other radio-active elements in medicine and surgery. New York: Lea & Febiger; 1914. p. 97–105.

    Google Scholar 

  9. Simpson FE. Radium therapy. St. Louis: C.V. Mosby Company; 1922.

    Google Scholar 

  10. Clark C. Radium girls: women and industrial health reform 1910–1935. Chapel Hill: University of North Carolina Press; 1997.

    Google Scholar 

  11. Rowland RE. Radium in humans: a review of U.S. Studies. In: Do U, editor. Energy. Chicago: University of Chicago; 1994. p. 233.

    Google Scholar 

  12. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2006.

    Google Scholar 

  13. Hall EJ, Giaccia AJ. Linear energy transfer and relative biologic effectiveness. Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  14. Sgouros G. Alpha-particles for targeted therapy. Adv Drug Deliv Rev. 2008;60(12):1402–6.

    Article  CAS  PubMed  Google Scholar 

  15. Wilbur DS. Chemical and radiochemical considerations in radiolabeling with α-emitting radionuclides. Curr Radiopharm. 2011;4(3):214–47.

    Article  CAS  PubMed  Google Scholar 

  16. Muller C, Vermeulen C, Koster U, Johnston K, Turler A, Schibli R, et al. Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm Chem. 2016:1–5.

    Google Scholar 

  17. de Kruijff RM, Wolterbeek HT, Denkova AG. A critical review of alpha radionuclide therapy-how to deal with recoiling daughters? Pharmaceuticals (Basel). 2015;8(2):321–36.

    Article  CAS  Google Scholar 

  18. McDevitt MR, Finn RD, Sgouros G, Ma D, Scheinberg DA. An 225Ac/213Bi generator system for therapeutic clinical applications: construction and operation. Appl Radiat Isot. 1999;50(5):895–904.

    Article  CAS  PubMed  Google Scholar 

  19. Atcher RW, Friedman AM, Hines JJ. An improved generator for the production of 212Pb and 212Bi for 224Ra. Appl Radiat Isot. 1988;39:283–6.

    Article  CAS  Google Scholar 

  20. Morgenstern A, Lebeda O, Stursa J, Bruchertseifer F, Capote R, McGinley J, et al. Production of 230U/226Th for targeted alpha therapy via proton irradiation of 231Pa. Anal Chem. 2008;80(22):8763–70.

    Article  CAS  PubMed  Google Scholar 

  21. Kulyukhin SA, Auerman LN, Novichenko VL, Mikheev NB, Rumer IA, Kamenskaya AN, et al. Production of microgram quantities of einsteinium-253 by reactor irradiation of californium. Inorg Chim Acta. 1985;110:25–6.

    Article  CAS  Google Scholar 

  22. Zaitseva NG, Dmitriev SN, Maslov OD, Molokanova LG, Starodub GY, Shishkina TV, et al. Terbium-149 for nuclear medicine. The production of 149Tb via heavy ions induced nuclear reactions. Czechoslov J Phys. 2003;53:A455–A8.

    Article  CAS  Google Scholar 

  23. Beyer G-J, Comar JJ, Dakovic M, Soloviev D, Tamburella C, Hagebo E, et al. Production routes of the alpha emitting 149Tb for medical application. Radiochim Acta. 2002;90:247–52.

    Article  CAS  Google Scholar 

  24. Beyer GJ, Miederer M, Vranjes-Duric S, Comor JJ, Kunzi G, Hartley O, et al. Targeted alpha therapy in vivo: direct evidence for single cancer cell kill using 149Tb-rituximab. Eur J Nucl Med Mol Imaging. 2004;31(4):547–54.

    Article  CAS  PubMed  Google Scholar 

  25. Muller C, Vermeulen C, Koster U, Johnston K, Turler A, Schibli R, et al. Alpha-PET with terbium-149: evidence and perspectives for radiotheranostics. EJNMMI Radiopharm Chem. 2016;1:1–5.

    Google Scholar 

  26. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43(1):260–90.

    Article  CAS  PubMed  Google Scholar 

  27. Brechbiel MW. Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging. 2008;52(2):166–73.

    CAS  PubMed  Google Scholar 

  28. Hassfjell S, Brechbiel MW. The development of the a-particle emitting radionuclides 212Bi and 213Bi, and their decay chain related radionuclides, for therapeutic applications. Chem Rev. 2001;101(7):2019–36.

    Article  CAS  PubMed  Google Scholar 

  29. Corson DR, MacKenzie KR, Segre E. Artificially radioactive element 85. Phys Rev. 1940;58:672–8.

    Article  CAS  Google Scholar 

  30. Hermann A, Hoffmann R, Ashcroft NW. Condensed astatine: monatomic and metallic. Phys Rev Lett. 2013;111(11):116404.

    Article  PubMed  CAS  Google Scholar 

  31. Pruszynski M, Bilewicz A, Zalutsky MR. Preparation of Rh[16aneS4-diol]211At and Ir[16aneS4-diol]211At complexes as potential precursors for astatine radiopharmaceuticals. Part I: synthesis. Bioconjug Chem. 2008;19(4):958–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilbur DS. Radiohalogenation of proteins: an overview of radionuclides, labeling methods, and reagents for conjugate labeling. Bioconjug Chem. 1992;3(6):433–70.

    Article  CAS  PubMed  Google Scholar 

  33. Wilbur DS. [211At]Astatine-labeled compound stability: issues with released [211at]astatide and development of labeling reagents to increase stability. Curr Radiopharm. 2008;1:144–76.

    Article  CAS  Google Scholar 

  34. Wilbur DS, Chyan MK, Nakamae H, Chen Y, Hamlin DK, Santos EB, et al. Reagents for astatination of biomolecules. 6. An intact antibody conjugated with a maleimido-closo-decaborate(2-) reagent via sulfhydryl groups had considerably higher kidney concentrations than the same antibody conjugated with an isothiocyanato-closo-decaborate(2-) reagent via lysine amines. Bioconjug Chem. 2012;23(3):409–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McDevitt MR, Ma D, Simon J, Frank RK, Scheinberg DA. Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl Radiat Isot. 2002;57(6):841–7.

    Article  CAS  PubMed  Google Scholar 

  36. Maguire WF, McDevitt MR, Smith-Jones PM, Scheinberg DA. Efficient 1-step radiolabeling of monoclonal antibodies to high specific activity with 225Ac for alpha-particle radioimmunotherapy of cancer. J Nucl Med. 2014;55(9):1492–8.

    Article  CAS  PubMed  Google Scholar 

  37. Deal KA, Davis IA, Mirzadeh S, Kennel SJ, Brechbiel MW. Improved in vivo stability of actinium-225 macrocyclic complexes. J Med Chem. 1999;42(15):2988–92.

    Article  CAS  PubMed  Google Scholar 

  38. Norenberg JP, Krenning BJ, Konings IRHM, Kusewitt DF, Nayak TK, Anderson TL, et al. 213Bi-[DOTA0, Tyr3]octreotide peptide receptor radionuclide therapy of pancreatic tumors in a preclinical animal model. Clin Cancer Res. 2006;12(3, Pt. 1):897–903.

    Article  CAS  PubMed  Google Scholar 

  39. Park SI, Shenoi J, Pagel JM, Hamlin DK, Wilbur DS, Orgun N, et al. Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: a preclinical model toward optimal consolidation therapy to eradicate minimal residual disease. Blood. 2010;116(20):4231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kirby HW, Salutsky ML. The radiochemistry of radium, U.S. Atomic Energy Commission NAS-NS 3057. Springfield: National Academy of Sciences; 1964. p. 172.

    Google Scholar 

  41. Gott M, Steinbach J, Mamat C. The radiochemical and radiopharmaceutical applications of radium. Open Chem. 2016;14(1):118–29.

    Article  CAS  Google Scholar 

  42. Rojas JV, Woodward JD, Chen N, Rondinone AJ, Castano CH, Mirzadeh S. Synthesis and characterization of lanthanum phosphate nanoparticles as carriers for Ra-223 and Ra-225 for targeted alpha therapy. Nucl Med Biol. 2015;42(7):614–20.

    Article  CAS  PubMed  Google Scholar 

  43. Muller C, Zhernosekov K, Koster U, Johnston K, Dorrer H, Hohn A, et al. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for alpha- and beta- radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med. 2012;53(12):1951–9.

    Article  CAS  PubMed  Google Scholar 

  44. Le Du A, Sabatie-Gogova A, Morgenstern A, Montavon G. Is DTPA a good competing chelating agent for Th(IV) in human serum and suitable in targeted alpha therapy? J Inorg Biochem. 2012;109:82–9.

    Article  PubMed  CAS  Google Scholar 

  45. Larsen RH, Borrebaek J, Dahle J, Melhus KB, Krogh C, Valan MH, et al. Preparation of TH227-labeled radioimmunoconjugates, assessment of serum stability and antigen binding ability. Cancer Biother Radiopharm. 2007;22(3):431–7.

    Article  CAS  PubMed  Google Scholar 

  46. Ramdahl T, Bonge-Hansen HT, Ryan OB, Larsen S, Herstad G, Sandberg M, et al. An efficient chelator for complexation of thorium-227. Bioorg Med Chem Lett. 2016;26(17):4318–21.

    Article  CAS  PubMed  Google Scholar 

  47. Deri MA, Ponnala S, Kozlowski P, Burton-Pye BP, Cicek HT, Hu C, et al. P-SCN-Bn-HOPO: a superior bifunctional chelator for 89Zr ImmunoPET. Bioconjug Chem. 2015;26(12):2579–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yordanov AT, Garmestani K, Zhang M, Zhang Z, Yao Z, Phillips KE, et al. Preparation and in vivo evaluation of linkers for 211At labeling of humanized anti-Tac. Nucl Med Biol. 2001;28(7):845–56.

    Article  CAS  PubMed  Google Scholar 

  49. Lindegren S, Andersson H, Back T, Jacobsson L, Karlsson B, Skarnemark G. High-efficiency astatination of antibodies using N-iodosuccinimide as the oxidising agent in labelling of N-succinimidyl 3-(trimethylstannyl)benzoate. Nucl Med Biol. 2001;28(1):33–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Scott Wilbur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilbur, D.S. (2019). The Radiopharmaceutical Chemistry of Alpha-Emitting Radionuclides. In: Lewis, J., Windhorst, A., Zeglis, B. (eds) Radiopharmaceutical Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-98947-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98947-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98946-4

  • Online ISBN: 978-3-319-98947-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics