Skip to main content

A Short History of Nuclear Medicine

  • Chapter
  • First Online:

Abstract

Roentgen’s discovery of x-rays in 1895 began the rapidly expanding uses of radiation and radioactivity in medicine. Becquerel discovered radioactivity the following year, and Marie Curie coined the term “radioactivity” shortly thereafter. These pioneers laid the groundwork for scientific principles we now take for granted, such as atomic structure. The first few decades of the twentieth century were a hotbed of discoveries, including artificial radioactivity by Irène and Frédéric Joliot-Curie and the invention of the cyclotron by Lawrence, leading to the production of radionuclides for medical applications (e.g. I-131, Tc-99m). de Hevesy presented the “radiotracer principle,” which states that radiopharmaceuticals can participate in biological processes but do not alter or perturb them. Kamon and Rubin’s discovery of carbon-14 was critical for its role in life science research. After World War II, nuclear science research used for destruction was quickly channeled for medicine. Iodine-131 was successfully applied to treating Graves’ disease and thyroid cancer. The Mo-99/Tc-99m generator was developed by scientists at Brookhaven National Laboratory. The invention of the gamma camera, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) instrumentation boomed during the 1950s through the 1970s. Fluorine-18-labeled 2-deoxy-2-[18F]fluoro-D-glucose (or [18F]FDG) was approved by the US Food and Drug Administration (FDA) in 1999 and is now the primary tracer for PET scans throughout the world. Novel research in developing instrumentation, radionuclide production, radiochemistry strategies, and radiotracers continues in the quest to improve human health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Change history

  • 12 November 2019

    Chapter 2 : The text under the section “The Discovery and Use of the Radionuclides of Iodine” in page 15 was incorrect.

References

  1. Rutherford E. LIV. Collision of α particles with light atoms. IV. An anomalous effect in nitrogen. London Edinburgh Dublin Philos Mag J Sci. 2009;37(222):581–7. https://doi.org/10.1080/14786440608635919.

    Article  Google Scholar 

  2. Nesvizhevsky V, Villain J. The discovery of the neutron and its consequences (1930–1940). Comptes Rendus Physique. 2017;18(9–10):592–600.

    CAS  Google Scholar 

  3. Gilmer P. Irene Joliot-Curie, a Nobel laureate in artificial radioactivity. In: Chiu MH, Gilmer PJ, Treagust DF, editors. Celebrating the 100th anniversary of Madame Marie Sklodowska Curie’s Nobel prize in chemistry. Rotterdam: Sense Publishers; 2011.

    Google Scholar 

  4. The Nobel Prize in Chemistry 1935. Nobelprize.org. Nobel Media AB 2014. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1935/. Accessed 4 June 2018.

  5. The Nobel Prize in Physics 1939. Nobelprize.org. Nobel Media AB 2014. http://www.nobelprize.org/nobel_prizes/physics/laureates/1939/. Accessed 4 June 2018.

  6. Niese S. George de Hevesy (1885–1966): Founder of radioanalytical chemistry. Czech J Phys. 2006;56(Suppl D):D3–D11.

    Google Scholar 

  7. The Nobel Prize in Chemistry 1943. Nobelprize.org. Nobel Media AB 2014. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1943/. Accessed 4 June 2018.

  8. Abraham GE. The history of iodine in medicine Part II: Thyroid fixaion and medical iodophobia. Iodine Study # 16. Optimox. http://www.optimox.com/iodine-study-16. Accessed 8 July 2018.

  9. Fahey FH, Grant FD, Thrall JH. Saul Hertz, MD, and the birth of radionuclide therapy. EJNMMI Phys. 2017;4:15. https://doi.org/10.1186/s40658-017-0182-7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hertz B. A tribute to Dr. Saul Hertz: the discovery of the medical uses of radioiodine. World J Nucl Med. 2019;18:8–12.

    PubMed  PubMed Central  Google Scholar 

  11. Livingood JJ, Seaborg GT. Radioactive isotopes of iodine. Phys Rev. 1938;54(10):775–82.

    CAS  Google Scholar 

  12. Hamilton JG, Soley MH. Studies in iodine metabolism by the use of a new radioactive isotope of iodine. Am J Phys. 1939;127:557–72

    CAS  Google Scholar 

  13. Keston AS, Ball RP, Frantz VK, Palmer WW. Storage of radioactive iodine in a metastasis from thyroid carcinoma. Science. 1946;95:362–3.

    Google Scholar 

  14. Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy; effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc. 1946;132(14):838–47.

    CAS  PubMed  Google Scholar 

  15. Luster M, Clarke SE, Dietlein M, Lassmann M, Lind P, Oyen WJ, et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35(10):1941–59.

    CAS  PubMed  Google Scholar 

  16. Lifton JF, Welch MJ. Preparation of glucose labeled with 20-minute half-lived carbon-11. Radiat Res. 1971;45(1):35–40.

    CAS  PubMed  Google Scholar 

  17. Raichle ME, Larson KB, Phelps ME, Grubb RL Jr, Welch MJ, Ter-Pogossian MM. In vivo measurement of brain glucose transport and metabolism employing glucose--11C. Am J Phys. 1975;228(6):1936–48.

    CAS  Google Scholar 

  18. Kamen MD. Radiation science, dark politics: a memoir of the nuclear age. Berkeley/Los Angeles: University of California Press, Ltd; 1985.

    Google Scholar 

  19. Ruben S, Kamen MD. Long-lived radioactive carbon: C14. Phys Rev. 1941;59:349–54.

    CAS  Google Scholar 

  20. Kamen MD. Early history of carbon-14. Science. 1963;140(3567):584–90.

    PubMed  Google Scholar 

  21. Availability of radioactive isotopes. Science. 1946;103:697–705.

    Google Scholar 

  22. Perrier C, Segrè E. Radioactive isotopes of element 43. Nature. 1937;140(3535):193–4.

    CAS  Google Scholar 

  23. Segrè E, Seaborg GT. Nuclear isomerism in element 43. Phys Rev. 1938;54(9):772.

    Google Scholar 

  24. Richards P, Tucker WD, Srivastava SC. Technetium-99m: an historical perspective. Int J Appl Radiat Isot. 1982;33(10):793–9.

    CAS  PubMed  Google Scholar 

  25. Richards P. Nuclide generators. Radioactive pharmaceuticals. Oak Ridge: US Atomic Energy Commission; 1966.

    Google Scholar 

  26. Beck RN. A theoretical evaluation of brain scanning systems. J Nucl Med. 1961;2:314–24.

    CAS  PubMed  Google Scholar 

  27. Harper PV, Lathrop KA, Charleston D, Beck R. Optimization of a scanning method using Tc-99m. Nucleonics. 1964;22(1):50–4.

    CAS  Google Scholar 

  28. Stang LG Jr, Tucker WD, Banks HO Jr, Doering RF, Mills TH. Production of iodine-132. Nucleonics. 1954;12(8):22–4.

    CAS  Google Scholar 

  29. Stang LG Jr, Tucker WD, Doering RF, Weiss AJ, Greene MW, Banks HO Jr. Development of methods for the production of certain short-lived radioisotopes. Radioisotopes in Scientific Research: Proceedings of the First UNESCO International Conference held in Paris, September 9–20, 1957. New York/London: Pergamon; 1958.

    Google Scholar 

  30. Tucker W, Greene M, Weiss A, Murrenhoff A. Methods of preparation of some carrier-free radioisotopes involving sorption on alumina. USAEC Report BNL-3746. Brookhaven National Laboratory: Upton; 1958.

    Google Scholar 

  31. r4 Tapscott E. Nuclear medicine pioneer, Hal O. Anger, 1920–2005. J Nucl Med Technol. 2005;33(4):250–3.

    Google Scholar 

  32. Wagner HN. A personal history of nuclear medicine. London: Springer-Verlag; 2006.

    Google Scholar 

  33. Brownell GL. A history of positron imaging. Presentation prepared in celebration of the 50th year of services of the author to the Massachusetts General Hospital on October 15, 1999.

    Google Scholar 

  34. Nutt R. The history of positron emission tomography. Mol Imaging Biol. 2002;4(1):11–26.

    PubMed  Google Scholar 

  35. Brownell GL, Sweet WH. Localization of brain tumors. Nucleonics. 1953;11:40–5.

    Google Scholar 

  36. Kuhl DE, Edwards RQ. Reorganizing data from transverse section scans of the brain using digital processing. Radiology. 1968;91(5):975–83.

    CAS  PubMed  Google Scholar 

  37. Hounsfield GN. Computerized transverse axial scanning (tomography): part 1. Description of system. Description of system. 1973;46(552):1016–22.

    CAS  Google Scholar 

  38. Hounsfield GN, Inventor EMI Limited (Hayes, Middlesex, EN), Assignee. Method and apparatus for measuring x or γ-radiation absorption or transmission at plural angles and analyzing the data. United States 1973.

    Google Scholar 

  39. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med. 1975;16(3):210–24.

    CAS  PubMed  Google Scholar 

  40. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975;114(1):89–98.

    CAS  PubMed  Google Scholar 

  41. Keyes JW Jr, Orlandea N, Heetderks WJ, Leonard PF, Rogers WL. The Humongotron—a scintillation-camera transaxial tomograph. J Nucl Med. 1977;18(4):381–7.

    PubMed  Google Scholar 

  42. Larsson SA. Gamma camera emission tomography. Development and properties of a multi-sectional emission computed tomography system. Acta Radiol Suppl. 1980;363:1–75.

    CAS  PubMed  Google Scholar 

  43. Kamen MD. The isotopes of carbon. In: Isotopic tracers in biology: an introduction to tracer methodology. 3rd ed. New York: Academic Press; 1957.

    Google Scholar 

  44. Cramer RD, Kistiakowsky GB. The synthesis of radioactive lactate acid. J Biol Chem. 1941;137:549–55.

    CAS  Google Scholar 

  45. Tobias CA, Lawrence JH, Roughton FJW, Root WS, Gregersen MI. The elimination of carbon monoxide from the human body with reference to the possible conversion of CO to CO2. Am J Physiol. 1945;145(2):253–63. https://doi.org/10.1152/ajplegacy.1945.145.2.253.

    CAS  Google Scholar 

  46. Volker JF, Hodge HC, Wilson HJ, Van Voorhis SN. The adsorption of fluorides by enamel, dentin, bone, and hydroxyapatite as shown by the radioactive isotope. J Biol Chem. 1940;134:543–8.

    Google Scholar 

  47. Ter-Pogossian MM, Herscovitch P. Radioactive oxygen-15 in the study of cerebral blood flow, blood volume, and oxygen metabolism. Semin Nucl Med. 1985;15(4):377–94.

    CAS  PubMed  Google Scholar 

  48. Ter-Pogossian MM, Powers WE, editors. The use of radioactive oxygen-15 in the determination of oxygen content in malignant neoplasms. Radioisotopes in Scientific Research: Proceedings of the First UNESCO International Conference held in Paris, September 9–20, 1957. New York/London: Pergamon; 1958.

    Google Scholar 

  49. Sols A, Crane RK. Substrate specificity of brain hexokinase. J Biol Chem. 1954;210(2):581–95.

    CAS  PubMed  Google Scholar 

  50. Kennedy C, Des Rosiers M, Jehle J, Reivich M, Sharpe F, Sokoloff L. Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with (14C) deoxyglucose. Science. 1975;187(4179):850–3.

    CAS  PubMed  Google Scholar 

  51. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. Measurement of local cerebral glucose metabolism in man with 18F-2-fluoro-2-deoxy-d-glucose. Acta Neurol Scand Suppl. 1977;64:190–1.

    CAS  PubMed  Google Scholar 

  52. Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med. 1980;21(7):670–5.

    CAS  PubMed  Google Scholar 

  53. Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986;27(2):235–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn J. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anderson, C.J., Ling, X., Schlyer, D.J., Cutler, C.S. (2019). A Short History of Nuclear Medicine. In: Lewis, J., Windhorst, A., Zeglis, B. (eds) Radiopharmaceutical Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-98947-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98947-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98946-4

  • Online ISBN: 978-3-319-98947-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics