Skip to main content

The Radiopharmaceutical Chemistry of the Radionuclides of Gallium and Indium

  • Chapter
  • First Online:
Radiopharmaceutical Chemistry

Abstract

Gallium-68, and indium-111 share the same group in the periodic table and can be harnessed for a range of applications in nuclear medicine, including scintigraphy, SPECT, PET and targeted radiotherapy. Indium-111 and gallium-67 are gamma-emitting radionuclides with long half-lives (67.3 h and 78.3 h, respectively), while gallium-68 is a positron-emitting radionuclide with a very short half-life (68 min). All three radiometals can be conjugated to biomolecular vectors using bifunctional chelators. Despite the chemical parallels between the three isotopes, their applications in nuclear medicine vary widely. Indium-111 is principally used in conjunction with vectors with longer in vivo pharmacokinetic profiles such as cells and monoclonal antibodies. In contrast, the use of gallium-67 has centred upon exploiting the biological behaviour of the free Ga3+ ion, specifically for the imaging of tumours and infection. Finally, gallium-68 typically serves as a radiolabel for small molecules with rapid pharmacokinetic profiles, such as peptides. Both indium-111 and gallium-67 emit Auger electrons as well as photons, leading to their potential use for radionuclide therapy. Chelators and bifunctional chelators for gallium and indium share common features but are not interchangeable. While gallium-67 and indium-111 were foundational nuclides for the field, they currently have diminished profiles, whereas the use of gallium-68 is burgeoning. The design of chelators for gallium has advanced markedly in the last decade, stimulated by the need for chelators that can be labeled with gallium-68 quickly under mild conditions using a radiopharmaceutical “kit”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Velikyan I. Ga-68-based radiopharmaceuticals: production and application relationship. Molecules. 2015;20(7):12913–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Paik CH, Herman DE, Eckelman WC, Reba RC. Synthesis, plasma-clearance, and in vitro stability of protein containing a conjugated In-111 chelate. J Radioanal Chem. 1980;57(2):553–64.

    CAS  Google Scholar 

  3. Segal AW, Arnot RN, Thakur ML, Lavender JP. Indium-111-labeled leukocytes for localization of abscesses. Lancet. 1976;2(7994):1056–8.

    CAS  PubMed  Google Scholar 

  4. Kotze HF, Heyns AD, Lotter MG, Pieters H, Roodt JP, Sweetlove MA, et al. Comparison of oxine and tropolone methods for labeling human platelets with indium-111. J Nucl Med. 1991;32(1):62–6.

    CAS  PubMed  Google Scholar 

  5. Weiner RE. The mechanism of Ga-67 localization in malignant disease. Nucl Med Biol. 1996;23(6):745–51.

    CAS  PubMed  Google Scholar 

  6. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43(1):260–90. Review

    CAS  Google Scholar 

  7. Young JD, Abbate V, Imberti C, Meszaros LK, Ma MT, Terry SYA, et al. Ga-68-THP-PSMA: a PET imaging agent for prostate cancer offering rapid, room-temperature, 1-step kit-based radiolabeling. J Nucl Med. 2017;58(8):1270–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hicks RJ. Ga-67SPECT: ave atque vale! Or have we bid a premature farewell to a trusted friend? Leuk Lymphoma. 2006;47(12):2440–2.

    CAS  PubMed  Google Scholar 

  9. Petrik M, Haas H, Dobrozemsky G, Lass-Florl C, Helbok A, Blatzer M, et al. Ga-68-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med. 2010;51(4):639–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Othman MF, Mitry NR, Lewington VJ, Blower PJ, Terry SY. Re-assessing gallium-67 as a therapeutic radionuclide. Nucl Med Biol. 2017;46:12–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jonkhoff AR, Plaizier MA, Ossenkoppele GJ, Teule GJ, Huijgens PC. High-dose gallium-67 therapy in patients with relapsed acute leukaemia: a feasibility study. Br J Cancer. 1995;72(6):1541–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Michel RB, Brechbiel MW, Mattes MJ. A comparison of 4 radionuclides conjugated to antibodies for single-cell kill. J Nucl Med. 2003;44(4):632–40.

    CAS  PubMed  Google Scholar 

  13. Ochakovskaya R, Osorio L, Goldenberg DM, Mattes MJ. Therapy of disseminated B-cell lymphoma xenografts in severe combined immunodeficient mice with an anti-CD74 antibody conjugated with 111indium, 67gallium, or 90yttrium. Clin Cancer Res. 2001;7(6):1505–10.

    CAS  PubMed  Google Scholar 

  14. van de Watering FC, Rijpkema M, Perk L, Brinkmann U, Oyen WJ, Boerman OC. Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. Biomed Res Int. 2014;2014:203601.

    PubMed  PubMed Central  Google Scholar 

  15. Charoenphun P, Meszaros LK, Chuamsaamarkkee K, Sharif-Paghaleh E, Ballinger JR, Ferris TJ, et al. [89Zr]oxinate4 for long-term in vivo cell tracking by positron emission tomography. Eur J Nucl Med Mol Imaging. 2015;42(2):278–87.

    CAS  PubMed  Google Scholar 

  16. Krenning EP, Kooij PP, Bakker WH, Breeman WA, Postema PT, Kwekkeboom DJ, et al. Radiotherapy with a radiolabeled somatostatin analogue, [111In-DTPA-D-Phe1]-octreotide. A case history. Ann N Y Acad Sci. 1994;733:496–506.

    CAS  Google Scholar 

  17. Wood SA, Samson IM. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev. 2006;28(1):57–102.

    Google Scholar 

  18. Berry DJ, Ma Y, Ballinger JR, Tavare R, Koers A, Sunassee K, et al. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands. Chem Commun (Camb). 2011;47(25):7068–70.

    CAS  Google Scholar 

  19. Viola NA, Rarig RS, Ouellette W, Doyle RP. Synthesis, structure and thermal analysis of the gallium complex of 1,4,7,10-tetraazacyclo-dodecane-N,N ',N “,N “'-tetraacetic acid (DOTA). Polyhedron. 2006;25(18):3457–62.

    CAS  Google Scholar 

  20. Sun YZ, Anderson CJ, Pajeau TS, Reichert DE, Hancock RD, Motekaitis RJ, et al. Indium(III) and gallium(III) complexes of bis(aminoethanethiol) ligands with different denticities: Stabilities, molecular modeling, and in vivo behavior. J Med Chem. 1996;39(2):458–70.

    CAS  PubMed  Google Scholar 

  21. Simecek J, Hermann P, Wester HJ, Notni J. How is Ga-68 labeling of macrocyclic chelators influenced by metal ion contaminants in Ge-68/Ga-68 generator eluates? ChemMedChem. 2013;8(1):95–103.

    CAS  PubMed  Google Scholar 

  22. Tsionou MI, Knapp CE, Foley CA, Munteanu CR, Cakebread A, Imberti C, et al. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Adv. 2017;7(78):49586–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Govindan SV, Michel RB, Griffiths GL, Goldenberg DM, Mattes MJ. Deferoxamine as a chelator for Ga-67 in the preparation of antibody conjugates. Nucl Med Biol. 2005;32(5):513–9.

    CAS  PubMed  Google Scholar 

  24. Nawaz S, Mullen GED, Sunassee K, Bordoloi J, Blower PJ, Ballinger JR. Simple, mild, one-step labelling of proteins with gallium-68 using a tris(hydroxypyridinone) bifunctional chelator: a Ga-68-THP-scFv targeting the prostate-specific membrane antigen. EJNMMI Res. 2017;7(1):86.

    PubMed  PubMed Central  Google Scholar 

  25. Knetsch PA, Zhai CY, Rangger C, Blatzer M, Haas H, Kaeopookum P, et al. [Ga-68]FSC-(RGD)3 a trimeric RGD peptide for imaging alphavbeta3 integrin expression based on a novel siderophore derived chelating scaffold-synthesis and evaluation. Nucl Med Biol. 2015;42(2):115–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Maecke HR, Riesen A, Ritter W. The molecular-structure of indium-DTPA. J Nucl Med. 1989;30(7):1235–9.

    CAS  PubMed  Google Scholar 

  27. Brechbiel MW, Gansow OA, Atcher RW, Schlom J, Esteban J, Simpson DE, et al. Synthesis of 1-(para-isothiocyanatobenzyl) derivatives of DTPA and EDTA – antibody labeling and tumor-imaging studies. Inorg Chem. 1986;25(16):2772–81.

    CAS  Google Scholar 

  28. Camera L, Kinuya S, Garmestani K, Pai LH, Brechbiel MW, Gansow OA, et al. Evaluation of a new DTPA-derivative chelator – comparative biodistribution and imaging studies of In-111 labeled B3 monoclonal-antibody in athymic mice bearing human epidermoid carcinoma xenografts. Nucl Med Biol. 1993;20(8):955–62.

    CAS  PubMed  Google Scholar 

  29. Meares CF, Moi MK, Diril H, Kukis DL, Mccall MJ, Deshpande SV, et al. Macrocyclic chelates of radiometals for diagnosis and therapy. Br J Cancer. 1990;62(Suppl 10):21–6.

    CAS  Google Scholar 

  30. Kozak RW, Raubitschek A, Mirzadeh S, Brechbiel MW, Junghaus R, Gansow OA, et al. Nature of the bifunctional chelating agent used for radioimmunotherapy with Y-90 monoclonal-antibodies – critical factors in determining in vivo survival and organ toxicity. Cancer Res. 1989;49(10):2639–44.

    CAS  PubMed  Google Scholar 

  31. Gleason GI. A positron cow. Int J Appl Radiat Isot. 1960;8:90–4.

    CAS  PubMed  Google Scholar 

  32. Yano Y, Anger HO. A gallium-68 positron cow for medical use. J Nucl Med. 1964;5:484–7.

    CAS  PubMed  Google Scholar 

  33. Tworowska I, Ranganathan D, Thamake S, Delpassand E, Mojtahedi A, Schultz MK, et al. Radiosynthesis of clinical doses of 68Ga-DOTATATE (GalioMedix) and validation of organic-matrix-based 68Ge/68Ga generators. Nucl Med Biol. 2016;43(1):19–26.

    CAS  PubMed  Google Scholar 

  34. Meyer GJ, Macke H, Schuhmacher J, Knapp WH, Hofmann M. 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging. 2004;31(8):1097–104.

    CAS  PubMed  Google Scholar 

  35. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48(10):1741–8.

    CAS  PubMed  Google Scholar 

  36. Eppard E, Wuttke M, Nicodemus PL, Rosch F. Ethanol-based post-processing of generator-derived 68Ga toward kit-type preparation of 68Ga-radiopharmaceuticals. J Nucl Med. 2014;55(6):1023–8.

    CAS  PubMed  Google Scholar 

  37. He P, Burke BP, Clemente GS, Brown N, Pamme N, Archibald SJ. Monolith-based Ga-68 processing: a new strategy for purification to facilitate direct radiolabelling methods. React Chem Eng. 2016;1(4):361–5.

    CAS  Google Scholar 

  38. Lin M, Mukhopadhyay U, Waligorski G, Balatoni J, Gonzalez-Lepera C. Production of Curie quantities of Ga-68 with a medical cyclotron via the Zn-68(p, n)Ga-68 reaction (abstract). J Nucl Med. 2017;58:336.

    Google Scholar 

  39. Pandey MK, Engelbrecht HP, Byrne JF, Packard AB, DeGrado TR. Production of Zr-89 via the Y-89(p,n)Zr-89 reaction in aqueous solution: Effect of solution composition on in-target chemistry. Nucl Med Biol. 2014;41(4):309–16.

    CAS  PubMed  Google Scholar 

  40. Haji-Saeid M, Pillai MRA, Ruth TJ, Schlyer DJ, Van den Winkel P, Vora MM. Cyclotron produced radionuclides: physical characteristics and production methods. Vienna: International Atomic Energy Agency; 2009.

    Google Scholar 

  41. Harris WR, Pecoraro VL. Thermodynamic binding constants for gallium transferrin. Biochemistry. 1983;22(2):292–9.

    CAS  Google Scholar 

  42. Palestro CJ. The current role of gallium imaging in infection. Semin Nucl Med. 1994;24(2):128–41.

    CAS  PubMed  Google Scholar 

  43. Krenning EP, Bakker WH, Kooij PP, Breeman WA, Oei HY, de Jong M, et al. Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med. 1992;33(5):652–8.

    CAS  PubMed  Google Scholar 

  44. Macke HR, Smith-Jones P, Maina T, Stolz B, Albert R, Bruns C, et al. New octreotide derivatives for in vivo targeting of somatostatin receptor-positive tumors for single photon emission computed tomography (SPECT) and positron emission tomography (PET). Horm Metab Res Suppl. 1993;27:12–7.

    CAS  PubMed  Google Scholar 

  45. Hofmann M, Maecke H, Borner AR, Weckesser E, Schoffski P, Oei ML, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand Ga-68-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28(12):1751–7.

    CAS  PubMed  Google Scholar 

  46. Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, et al. Comparison of PET imaging with a Ga-68-labelled PSMA ligand and F-18-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41(1):11–20.

    CAS  PubMed  Google Scholar 

  47. Benešová M, Schäfer M, Bauder-Wüst U, Afshar-Oromieh A, Kratochwil C, Mier W, et al. Preclinical evaluation of a tailor-made DOTA-conjugated psma inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56(6):914–20.

    PubMed  Google Scholar 

  48. Weineisen M, Schottelius M, Simecek J, Baum RP, Yildiz A, Beykan S, et al. Ga-68- and Lu-177-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med. 2015;56(8):1169–76.

    CAS  PubMed  Google Scholar 

  49. Hofman MS, Eu P, Jackson P, Hong E, Binns D, Iravani A, et al. Cold Kit PSMA PET imaging: Phase I study of 68Ga-THP-PSMA PET/CT in patients with prostate cancer. J Nucl Med. 2018;59(4):625–31.

    CAS  PubMed  Google Scholar 

  50. Hofman MS, Hicks RJ. Gallium-68 EDTA PET/CT for renal imaging. Semin Nucl Med. 2016;46(5):448–61.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Blower .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blower, J.E. et al. (2019). The Radiopharmaceutical Chemistry of the Radionuclides of Gallium and Indium. In: Lewis, J., Windhorst, A., Zeglis, B. (eds) Radiopharmaceutical Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-98947-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98947-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98946-4

  • Online ISBN: 978-3-319-98947-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics