Skip to main content

The Ecological Classification of Cave Animals and Their Adaptations

  • Chapter
  • First Online:
Book cover Cave Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 235))

Abstract

Why certain animals lose features believed essential, like eyes, bodily color, and robustness, to live permanently underground has long intrigued biologists and laymen. Many of these features evolved independently and shared among diverse groups living in caves including both terrestrial and aquatic cavernicoles. The degree of change often correlates with the level of association of the species to caves. This association allowed development of a classification scheme to help understand the evolutionary ecology of cave communities. The refined scheme, called the Schiner-Racovitza system, is based on both morphology and ecology. The categories are troglobionts and stygobionts (animal species that obligately live underground on land or in water, respectively), troglophiles (animals that can live and reproduce in both underground and surface habitats), and trogloxenes (animals that regularly visit caves for food or refuge). Common adaptations to cave life involve morphology, behavior, and physiology. In addition to the conspicuous losses, many compensatory traits have evolved, such as longer appendages, longer and more slender body, more and larger sensory structures, and specialized mouthparts and tarsi. Modified behavioral traits include reduction in circadian rhythm, reduced dispersal ability, slower but nearly continuous activity, and modified mating behavior. Physiological adaptations include low metabolism rate, dietary changes, resistance to starvation, modified water balance mechanisms, tolerance to high CO2 and low O2, and increased longevity. Cave-adapted animals also display greater K-selection with fewer and larger eggs and reduced life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adis J, Caoduro G, Messner B et al (1997) On the semi-aquatic behavior of a new troglobitic millipede from northern Italy (Diplopoda, Polydesmida: Polydesmidae). Entomol Scand Suppl 51:301–306

    Google Scholar 

  • Ahearn G, Howarth FG (1982) Physiology of cave arthropods in Hawaii. J Exp Zool 222:227–238

    Article  Google Scholar 

  • Bechler DL (1983) The evolution of agonistic behavior in amblyopsid fishes. Behav Ecol Sociobiol 12:35

    Article  Google Scholar 

  • Borowsky R (2008) Restoring sight in blind cavefish. Curr Biol 18:R23–R24

    Article  CAS  PubMed  Google Scholar 

  • Borowsky R (2013) Eye regression in blind Astyanax cavefish may facilitate the evolution of an adaptive behavior and its sensory receptors. BMC Biol 11:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brancelj A (2004) Crustacea: Copepoda. In: Gunn J (ed) Encyclopedia of caves and karst science. New York London, Fitzroy Dearborn, pp 259–261

    Google Scholar 

  • Camacho AI (1992) A classification of the aquatic and terrestrial subterranean environments and their associated fauna. In: Camacho AI (ed) The natural history of biospeleology. Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp 57–103

    Google Scholar 

  • Cazals M, Juberthie-Jupeau LJ (1983) Ultrastructure of a tubular sternal gland in the males of Speonomus hydrophilus (Coleoptera: Bathyscinae). Can J Zool 61:673–681

    Article  Google Scholar 

  • Christiansen K (1962) Proposition pour la classification des animaux cavernicoles. Spelunca Mem 2:76–78

    Google Scholar 

  • Christiansen K (1965) Behavior and form in the evolution of cave Collembola. Evolution 19:529–537

    Article  Google Scholar 

  • Christiansen K (2012) Morphological adaptations. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier, Amsterdam, pp 517–527

    Chapter  Google Scholar 

  • Cuénot L (1911) La Genesis de las Especes Animals. Librairie Félix Alcan, Paris

    Google Scholar 

  • Cooper MR, Cooper JE (1976) Growth and longevity in cave crayfishes. ASB Bull 23:52

    Google Scholar 

  • Culver DC (1982) Cave life. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Culver DC, Holsinger JR, Christman MC et al (2010) Morphological differences among eyeless amphipods in the genus Stygobromus dwelling in different subterranean habitats. J Crustacean Biol 30:68–74

    Article  Google Scholar 

  • Dattagupta S, Schaperdoth I, Montanari A et al (2009) A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. ISME J 3:935–943

    Article  CAS  PubMed  Google Scholar 

  • Deharveng L, Christian E (1984) Gnathofolsomia palpata n. g., n. sp., eine Isotomide mit abgewandelten Mundwerkzeugen aus österreichischen Höhlen (Insecta, Collembola). Verh Zool-Bot Ges Österr 122:97–101

    Google Scholar 

  • Deleurance-Glaçon S (1963) Recherches sur les Coléoptères cavernicoles troglobies de la sous-famille des Bathysciinae. Ann Sci Nat Zool 5:1–172

    Google Scholar 

  • Deleurance S, Deleurance EP (1964) Reproduction et cycle évolutif larvaire des Aphaenops (A. cerberus Dieck, A. crypticola Linder), Insectes Coléoptères cavernicoles. C R Acad Sci III-Vie 258:4369–4370

    Google Scholar 

  • Derkarabetian S, Steinmann DB, Hedin M (2010) Repeated and time-correlated morphological convergence in cave-dwelling harvestmen (Opiliones, Laniatores) from montane western North America. PLOS One 5:e10388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duboué ER, Keene AC, Borowsky RL (2011) Evolutionary convergence on sleep loss in cavefish populations. Curr Biol 21:671–676

    Article  PubMed  CAS  Google Scholar 

  • Durand JP (1971) Recherches sur l’appareil visuel du Protée, Proteus anguinus Laurenti, Urodele hypogé. Annales de Spéléologie 26:497–824

    Google Scholar 

  • Durand JP (1976) Occular development and involution in the European cave salamander, Proteus anguinus Laurenti. Biol Bull 151:450–466

    Article  CAS  PubMed  Google Scholar 

  • Durand JP (1983) Données et hypothèses sur l’évolution des Proteidae. Bull Soc Zool Fr 108:617–630

    Google Scholar 

  • Eigenman CH (1909) Cave vertebrates of North America. Washington DC, Carnegie Institution of Washington

    Google Scholar 

  • Enghoff H (1985a) A new species of Trogloiulus with modified mouthparts. With a revised key to the species and new records of the genus (Diplopoda, Julida: Julidae). Lavori Societa Veneziana di Scienze Naturali 10:69–77

    Google Scholar 

  • Enghoff H (1985b) Modified mouthparts in hydrophilous cave millipedes (Diplopoda). Bijdr Dierkd 55:67–77

    Google Scholar 

  • Enghoff H, Caoduro G, Adis J et al (1997) A new cavernicolous semiaquatic species of Serradium (Diplopoda, Polydesmidae) and its terrestrial, sympatric congener. With notes on the genus Serradium. Zool Scr 26:270–290

    Article  Google Scholar 

  • Fennah RG (1973) The cavernicolous fauna of Hawaiian lava tubes, part 4. Two new blind Oliarus (Fulgoroidea: Cixiidae). Pac Insects 15:181–184

    Google Scholar 

  • Fišer C, Kovacec Ž, Pustovrh M et al (2010) The role of predation in the diet of Niphargus (Amphipoda: Niphargidae). Speleobiology Notes 2:4–6

    Google Scholar 

  • Fišer C, Blejec A, Trontelj P (2012) Niche-based mechanisms operating within extreme habitats: a case study of subterranean amphipod communities. Biol Lett 8:578–581

    Article  PubMed  PubMed Central  Google Scholar 

  • Fišer Ž, Novak L, Luštrik R et al (2015) Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods. Naturwissenschaften 103:1–12

    Google Scholar 

  • Gibert J, Mathieu J (1980) Relations entre les teneurs en protéines, glucides et lipides au cours du jeûne expérimental chez deux espèces de Niphargus peuplant des biotopes différents. Crustaceana Suppl 6:137–147

    Google Scholar 

  • Ginet R (1960) Écologie, éthologie et biologie de Niphargus. Cycle biologique de Niphargus. Annales de Spéléologie 15:239–376

    Google Scholar 

  • Ginet R, Decou V (1977) Initiation à la biologie et à lʼécologie souterraines. Delarge, Paris

    Google Scholar 

  • Hadley NF, Ahearn GA, Howarth FG (1981) Water and metabolic relations of cave adapted and epigean lycosid spiders in Hawaii. J Arachnol 9:215–222

    Google Scholar 

  • Hervant F, Mathieu J, Barré H et al (1997) Comparative study on the behavioural, ventilatory, and respiratory responses of hypogean and epigean crustaceans to long-term starvation and subsequent feeding. Comp Biochem Physiol 118:1277–1283

    Article  Google Scholar 

  • Hervant F, Mathieu J, Messana G (1998) Oxygen consumption and ventilation in declining oxygen tension and posthypoxic recovery in epigean and hypogean crustaceans. J Crustacean Biol 18:717–727

    Article  Google Scholar 

  • Hervant F, Mathieu J, Durand JP (2001) Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. J Exp Biol 204:269–281

    CAS  PubMed  Google Scholar 

  • Hervant F, Renault D (2002) Long-term fasting and realimentation in hypogean and epigean isopods: a proposed adaptive strategy for groundwater organisms. J Exp Biol 205:2079–2087

    CAS  PubMed  Google Scholar 

  • Hoch H, Howarth FG (1989) Six new cavernicolous cixiid planthoppers in the genus Solonaima from Australia (Homoptera: Fulgoroidea). Syst Entomol 14:377–402

    Article  Google Scholar 

  • Hoch H, Howarth FG (1993) Evolutionary dynamics of behavioral divergence among populations of the Hawaiian cave-dwelling planthopper Oliarus polyphemus (Homoptera: Fulgoroidea). Pacific Sci 47:303–318

    Google Scholar 

  • Hoch H, Howarth FG (1999) Multiple cave invasions by species of the planthopper genus Oliarus in Hawaii (Homoptera: Fulgoroidea: Cixiidae). Zool J Linn Soc 127:453–475

    Article  Google Scholar 

  • Hoch H, Wessel A (2005) Communication by substrate-borne vibrations in cave planthoppers (Auchenorrhyncha: Hemiptera: Fulgoromorpha: Cixiidae). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication. Physiology, behaviour, ecology and evolution. CRC-Taylor & Francis, Boca Raton, London, New York, pp 187–197

    Google Scholar 

  • Holsinger JR (1988) Troglobites: the evolution of cave-dwelling organisms. Am Sci 76:146–153

    Google Scholar 

  • Howarth FG (1980) The zoogeography of specialized cave animals: a bioclimatic model. Evolution 34:394–406

    Article  PubMed  Google Scholar 

  • Howarth FG (1981) Community structure and niche differentiation in Hawaiian lava tubes. Chapter 7. In: Mueller-Dombois D, Bridges KW, Carson HL (eds) Island ecosystems: biological organization in selected Hawaiian communities. US/IBP synthesis series, Vol, vol 15. Hutchinson Ross Publishing Co., PA, pp 318–336

    Google Scholar 

  • Howarth FG (1983) Ecology of cave arthropods. Annu Rev Entomol 28:365–389

    Article  Google Scholar 

  • Howarth FG (1993) High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. Am Nat 142:S65–S77

    Article  PubMed  Google Scholar 

  • Howarth FG, Mull WP (1992) Hawaiian Insects and their Kin. University of Hawaii Press, Honolulu

    Google Scholar 

  • Howarth FG, Stone FD (1990) Elevated carbon dioxide levels in Bayliss Cave, Australia: implications for the evolution of obligate cave species. Pacific Sci 44:207–218

    Google Scholar 

  • Hüppop K (1985) The role of metabolism in the evolution of cave animals. NSS Bulletin 47:136–146

    Google Scholar 

  • Hüppop K (2000) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Elsevier, Amsterdam, pp 159–188

    Google Scholar 

  • Hüppop K (2005) Adaptation to low food. In: Culver DC, White WB (eds) Encyclopedia of caves. Academic, Amsterdam, pp 4–10

    Google Scholar 

  • Iliffe TM, Kornicker LS (2009) Worldwide diving discoveries of living fossil animals from the depths of anchialine and marine caves. Smithson Contrib Mar Sci 38:269–280

    Google Scholar 

  • Jeffery WR (2005) Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Hered 96:185–196

    Article  CAS  PubMed  Google Scholar 

  • Jeffery WR (2009) Evolution and development in the cavefish Astyanax. Curr Top Dev Biol 86:191–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery WR, Strickler AG (2010) Development as an evolutionary process in Astyanax cavefish. In: Trajano E (ed) The biology of subterranean fishes. Academic, New York

    Google Scholar 

  • Jeffery WR, Strickler AG, Guiney S et al (2000) Prox 1 in eye degeneration and sensory compensation during development and evolution of the cavefish Astyanax. Dev Genes Evol 210:223–230

    Article  CAS  PubMed  Google Scholar 

  • Jegla T, Poulson T (1968) Evidence of circadian rhythms in a cave crayfish. J Exp Zool 168:273–282

    Article  Google Scholar 

  • Jegla TC, Poulson TL (1970) Circanian rhythms-I. Reproduction in the cave crayfish, Orconectes pellucidus inermis. Comp Biochem Physiol 33:347–355

    Article  Google Scholar 

  • Joseph G (1882) Systematisches Verzeichnis der in den Tropfsteingrotten von Krain einheimischen Arthropoden nebst Diagnosen der vom Verfasser entdecken und bisher noch nicht beschriebenen Arten Berliner Entomol XXV

    Google Scholar 

  • Juberthie-Jupeau L, Cazals M (1984) Accouplement et comportement sexuel chez un Bathysciinae souterrain, Speonomus delarouzeei Fairm. Behav Proc 9:147–155

    Article  CAS  Google Scholar 

  • Jugovic J, Prevorčnik S, Aljancic G et al (2010) The atyid shrimp (Crustacea: Decapoda: Atyidae) rostrum: phylogeny versus adaptation, taxonomy versus trophic ecology. J Nat Hist 44:2509–2533

    Article  Google Scholar 

  • Kowalko JE, Rohner N, Rompani SB et al (2013) Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms. Curr Biol 23:1874–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konec M, Prevorčnik S, Sarbu SM et al (2015) Parallels between two geographically and ecologically disparate cave invasions by the same species, Asellus aquaticus (Isopoda, Crustacea). J Evol Biol 28:864–875

    Article  CAS  PubMed  Google Scholar 

  • Kuštor V, Novak T (1980) Individual differences in trapping activity of two underground beetle species. Mem Biospeol 7:77–84

    Google Scholar 

  • Langecker TG (2000) The effect of continuous darkness on cave ecology and cavernicolous evolution. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world 30: Subterranean ecosystems. Elsevier Science, Amsterdam, pp 135–157

    Google Scholar 

  • Maguire B (1960) Lethal effect of visible light on cavernicolous ostracods. Science 132:226–227

    Article  PubMed  Google Scholar 

  • Malard F, Hervant F (2012) Responses to low oxygen. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, Amsterdam, pp 651–658

    Google Scholar 

  • Mathieu J, Gibert J (1980) Evolution des teneurs en protéines, glucides et lipides de Niphargus rhenorhodanensis Schellenberg comparé entre l’élevage en milieu naturel reconstitute et le jeûne expérimental. Crustaceana Suppl 6:128–136

    Google Scholar 

  • Matsuda R (1982) The evolutionary process in talitrid amphipods and salamanders in changing environments, with a discussion of “genetic assimilation” and some other evolutionary concepts. Can J Zool 60:733–749

    Article  CAS  Google Scholar 

  • McGaugh SE, Gross JB, Aken B et al (2014) The cavefish genome reveals candidate genes for eye loss. Nat Commun 5:5307

    Article  CAS  PubMed  Google Scholar 

  • Merker D, Gilbert H (1932) Die Wiederstandfähigkeit von Süsswasser-planarien in ultraviolettreichen Licht. Zool Jahrb Abt allg Zool Physiol Tiere 50:479–556

    Google Scholar 

  • Mermillod-Blondin F, Lefour C, Lalouette L et al (2013) Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J Exp Biol 216:1683–1694

    Article  CAS  PubMed  Google Scholar 

  • Moldovan O (1998) Sternal gland in the species of Bathysciola (Coleoptera, Cholevidae, Bathysciinae). Mem Biospeol 25:107–110

    Google Scholar 

  • Moldovan O (2003) Sex recognition at the subterranean Leptodirinae (Coleoptera, Cholevidae). II. Biochemical approach and data integration. Subterr Biol 1:99–110

    Google Scholar 

  • Moldovan O, Juberthie C (1994) Étude comparée et ultrastructurale de la glande sternale de quelques coléoptères Bathysciinae (Coleoptera, Catopidae). Mem Biospeol 21:97–101

    Google Scholar 

  • Moldovan O, Paredes Bartolome C (1998/1999) Fractal analysis of the behaviour of cave beetles (Coleoptera: Cholevidae: Bathysciinae). Trav Inst Speol “E. Racovitza” 37–38:217–222

    Google Scholar 

  • Moldovan OT, Jalzic B, Erichsen E (2004) Adaptation of the mouthparts in some subterranean Cholevinae (Coleoptera, Leiodidae). Nat Croat 13:1–18

    Google Scholar 

  • Moran D, Softley R, Warrant EJ (2015) The energetic cost of vision and the evolution of eyeless Mexican cavefish. Sci Adv 1:1–9

    Article  Google Scholar 

  • Moritsch MM, Pakes MJ, Lindberg DR (2014) How might sea level change affect arthropod biodiversity in anchialine caves: a comparison of Remipedia and Atyidae taxa (Arthropoda: Altocrustacea). Organ Div Evol 14:225–235

    Article  Google Scholar 

  • Parzefall J (1976) Die Rolle der chemischen Information im Verhalten des Grottenolms Proteus anguinus Laur. (Proteidae, Urodela). Z Tierpsychol 42:29–49

    Article  Google Scholar 

  • Parzefall J (1983) Field observation in epigean and cave populations of Mexican characid Astyanax mexicanus (Pisces, Characidae). Mem Biospeol 10:171–176

    Google Scholar 

  • Parzefall J (1992) Behavioural aspects in animals living in caves. In: Camacho AI (ed) The natural history of Biospeleology. Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp 327–376

    Google Scholar 

  • Parzefall J, Durand JP, Richard B (1980) Chemical communication in Necturus maculosus and his cave-living relative Proteus anguinus (Proteidae, Urodela). Z Tierpsychol 53:133–138

    Article  Google Scholar 

  • Peck SB (1973) A systematic revision and evolutionary biology of the Ptomaphagus adelops. Bull Mus Comp Zool 145:29–162

    Google Scholar 

  • Plath M, Hauswaldt S, Moll K et al (2007) Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulfide. Mol Ecol 16:967–976

    Article  CAS  PubMed  Google Scholar 

  • Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 7:257–290

    Article  Google Scholar 

  • Poulson TL, Jegla TC (1969) Circadian rhythms in cave animals. In: Actes of the 4th international congress of speleology, Ljubljana, Yugoslavia, 4–5:193–195

    Google Scholar 

  • Poulson TL, White WB (1969) The cave environment. Science 3897:971–980

    Article  Google Scholar 

  • Prevorčnik S, Blejec A, Sket B (2004) Racial differentiation in Asellus aquaticus (L.) (Crustacea: Isopoda: Asellidae). Arch Hydrobiol 160:193–214

    Article  Google Scholar 

  • Protas ME, Hersey C, Kochanek D et al (2006) Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nature Genet 38:107–111

    Article  CAS  PubMed  Google Scholar 

  • Protas ME, Trontelj P, Patel NHN (2011) Genetic basis of eye and pigment loss in the cave crustacean, Asellus aquaticus. P Natl Acad Sci USA 108:5702–5707

    Article  CAS  Google Scholar 

  • Racovitza EG (1907) Essay on biospeological problems. In: Moldovan OT (ed) Emil George Racovitza. Essay on biospeological problems—French, English, Romanian version (2006). Cluj-Napoca, Romania, Casa Cărţii de Ştiinţă, pp 127–183

    Google Scholar 

  • Riesch R, Schlupp I, Langerhans RB et al (2011) Shared and unique patterns of embryo development in extremophile Poeciliids. PLOS One 6:e27377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roff DA (1986) The evolution of wing dimorphism in insects. Evolution 40:1009–1020

    Article  PubMed  Google Scholar 

  • Roff DA (1992) The evolution of life histories: theory and analysis. Chapman & Hall, London

    Google Scholar 

  • Rouch R (1968) Contribution à la connaissance des Harpacticides hypogés (Crustacés-Copépodes). Annales de Spéléologie 23:9–167

    Google Scholar 

  • Ruffo S (1957) Le attuali conoscenze sulla fauna cavernicola della Regione Pugliese. Mem Biogeogr Adriat 3:1–143

    Google Scholar 

  • Schatz A, Briegleb W, Sinapius F et al (1977) Rhythmic locomotor activity of the grottenolm (Proteus anguinus Laur.) and the gold fish (Carassius spec.) measured in a mine. J Interdiscipl Cycle Res 8:347–349

    Article  Google Scholar 

  • Schemmel C (1967) Vergleichende Untersuchungen an den Hautsinnesorganen ober- und unterirdisch lebender Astyanax-Formen. Z Morph Tiere 61:255–316

    Article  Google Scholar 

  • Schemmel C (1980) Studies on the genetics of feeding behaviour in the cave fish Astyanax mexicanus f. Anoptichthys. An example of apparent monofactorial inheritance by polygenes. Z Tierpsychol 53:9–22

    Article  CAS  PubMed  Google Scholar 

  • Schiner JR (1854) Fauna der Adelsberger- Lueger-und Magdalenen-Grotte. In: Schmidl A (ed) Grotten and Höhlen von Adelsberg. Lueg, Planina und Laas, Wien, Braunmüller

    Google Scholar 

  • Schiødte JC (1849) Bidrag til den underjordisje Fauna. Vidensk. Selsk. Skr., 5 Raekke naturvidenskabelig Og Mathematisk Afdeling 2:1–39

    Google Scholar 

  • Schlegel P, Bulog B (1997) Population-specific behavioral electrosensitivity of the European blind cave salamander, Proteus anguinus. J Physiol 91:75–79

    CAS  Google Scholar 

  • Schlegel PA, Briegleb W, Bulog B et al (2006) Revue et nouvelles données sur la sensitivité a la lumiere et orientation non-visuelle chez Proteus anguinus, Calotriton asper et Desmognathus ochrophaeus (Amphibiens urodeles hypogés). Bull Soc Herp Fr 118:1–31

    Google Scholar 

  • Simčič T, Brancelj A (2007) The effect of light on oxygen consumption in two amphipod crustaceans – the hypogean Niphargus stygius and the epigean Gammarus fossarum. Mar Freshw Behav Phy 40:141–150

    Article  Google Scholar 

  • Sket B (2008) Can we agree on an ecological classification of subterranean animals? J Nat Hist 42:1549–1563

    Article  Google Scholar 

  • Soares D, Yamamoto Y, Strickler AG et al (2004) The lens has a specific influence on optic nerve and tectum development in the blind cavefish Astyanax. Dev Neurosci 26:308–317

    Article  CAS  PubMed  Google Scholar 

  • Soares D, Niemiller ML (2013) Sensory adaptations of fishes to subterranean environments. BioScience 63:274–283

    Article  Google Scholar 

  • Steffan WA (1973) Polymorphism in Plastosciara perniciosa. Science 182:1265–1266

    Article  CAS  PubMed  Google Scholar 

  • Stegner ME, Stemme T, Iliffe TM et al (2015) The brain in three crustaceans from cavernous darkness. BMC Neurosc 16:19

    Article  Google Scholar 

  • Teyke T (1990) Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain Behav Evol 35:23–30

    Article  CAS  PubMed  Google Scholar 

  • Tobler M, Palacios M, Chapman LJ et al (2011) Evolution in extreme environments: replicated phenotypic differentiation in livebearing fish inhabiting sulfidic springs. Evolution 65:2213–2228

    Article  PubMed  Google Scholar 

  • Tobler M, Henpita C, Basset B et al (2014) H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments. Comp Biochem Phys A 174:7–14

    Article  CAS  Google Scholar 

  • Trajano E, Carvalho MR (2017) Towards a biologically meaningful classification of subterranean organisms: a critical analysis of the Schiner-Racovitza system from a historical perspective, difficulties of its application and implications for conservation. Subterr Biol 22:1–26

    Article  Google Scholar 

  • Trajano E, Menna-Barreto L (1995) Locomotor activity pattern of Brazilian cave catfishes under constant darkness (Siluriformes, Pimelodidae). Biol Rhythm Res 26:341–353

    Article  Google Scholar 

  • Trontelj P, Blejec A, Fišer C (2012) Ecomorphological convergence of cave communities. Evolution 66:3852–3865

    Article  PubMed  Google Scholar 

  • Turk S, Sket B, Sarbu S (1996) Comparison between some epigean and hypogean populations of Asellus aquaticus. Hydrobiologia 337:161–170

    Article  Google Scholar 

  • Turquin M-J, Barthelemy D (1985) The dynamics of a population of the troglobitic amphipod Niphargus virei Chevreux. Stygologia 1:109–117

    Google Scholar 

  • Uiblein F, Durand JP, Juberthie C et al (1992) Predation in caves: the effects of prey immobility and darkness on the foraging behaviour of two salamanders, Euproctus asper and Proteus anguis. Behav Proc 28:33–40

    Article  CAS  Google Scholar 

  • Vandel A (1964) Biospéologie - la biologie des animaux cavernicoles. Gauthier-Villars, Paris

    Google Scholar 

  • Vogt G, Štrus J (1999) Hypogean life-style fuelled by oil. Naturwissenschaften 86:43–45

    Article  CAS  Google Scholar 

  • Voituron Y, De Fraipont M, Issartel J et al (2011) Extreme lifespan of the human fish (Proteus anguinus): a challenge for ageing mechanisms. Biol Lett 7:105–107

    Article  PubMed  Google Scholar 

  • Wessel A, Hoch H, Asche M et al (2013) Founder effects initiated rapid species radiation in Hawaiian cave planthoppers. P Natl Acad Sci USA 110:9391–9396

    Article  CAS  Google Scholar 

  • Wilhelm F, Schindler D (2000) Reproductive strategies of Gammarus lacustris (Crustacea: Amphipoda) along an elevation gradient. Funct Ecol 14:413–422

    Article  Google Scholar 

  • Wilkens H (1992) Neutral mutations and evolutionary progress. In: Camacho AI (ed) The natural history of biospeleology. Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp 403–422

    Google Scholar 

  • Wilkens H, Strecker U (2003) Convergent evolution of the cavefish Astyanax (Characidae, Teleostei): genetic evidence from reduced eye-size and pigmentation. Biol J Linn Soc 80:545–554

    Article  Google Scholar 

  • Yamamoto Y, Byerly MS, Jackman WR et al (2009) Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution. Develop Biol 330:200–211

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa M, Jeffery WR (2008) Shadow response in the blind cavefish Astyanax reveals conservation of a functional pineal eye. J Exp Biol 211:292–299

    Article  PubMed  Google Scholar 

  • Yoshizawa M, Gorički Š, Soares D et al (2010) Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol 20:1631–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Jana Bedek, Pawel Jaloszynski, William P Mull, Udo Schmidt, and Boris Sket for the permission to use their photos and to Ľubomir Kováč and Stuart Halse for their corrections and suggestions. OTM acknowledges the financial support from the Romanian Academy and the grant of the Romanian Ministry of Research and Innovation, CNCS—UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0016, within PNCDI III.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Howarth, F.G., Moldovan, O.T. (2018). The Ecological Classification of Cave Animals and Their Adaptations. In: Moldovan, O., Kováč, Ľ., Halse, S. (eds) Cave Ecology. Ecological Studies, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-98852-8_4

Download citation

Publish with us

Policies and ethics