Skip to main content

Historical and Ecological Factors Determining Cave Diversity

  • Chapter
  • First Online:
Cave Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 235))

Abstract

Species living in the deep subterranean environment tend to share similar morphological characters evolved independently from epigean ancestors, the troglomorphic phenotype. They also tend to have very restricted distributions, as a consequence of their limited dispersal capabilities. Until recent years, the predominant view on the evolution of the subterranean fauna was that troglomorphic species were strictly confined to the deep subterranean environment, with the implication that species not in close geographic vicinity must have independently developed their troglomorphic characters in a sort of concerted evolution close to the traditional concept of orthogenesis. Recent developments on the knowledge of the ecology and the phylogenetic history of several groups with abundance of subterranean species are changing this view. First, there is increasing evidence that epigean and deep subterranean environments form a continuum without clear limits and that troglomorphic species can occupy different parts of this continuum at different times depending on their particular conditions. And second, the availability of molecular phylogenies has led to the discovery of monophyletic lineages of troglomorphic species only, suggesting the single origin of the subterranean colonisation and of the troglomorphic characters, with subsequent dispersal and diversification of already subterranean species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcover JA, Mayol J (1980) Noticia del hallazgo de Baleaphryne (Amphibia: Anura: Discoglossidae) viviente en Mallorca. Doñana Acta Vertebrata 7:266–269

    Google Scholar 

  • Andersen T, Baranov V, Hagenlund LK et al (2016) Blind flight? A New troglobiotic Orthoclad (Diptera, Chironomidae) from the Lukina Jama-Trojama Cave in Croatia. PLoS One 11:e0152884

    Article  PubMed  PubMed Central  Google Scholar 

  • Andújar C, Faille A, Pérez-González S et al (2016) Gondwanian relicts and oceanic dispersal in a cosmopolitan radiation of euedaphic ground beetles. Mol Phylogenet Evol 99:235–246

    Article  PubMed  Google Scholar 

  • Arnedo MA, Oromi P, Múrria C et al (2007) The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera Latreille (Araneae: Dysderidae) in the Canary Islands. Invertebr Syst 21:623–660

    Article  Google Scholar 

  • Assmann T, Casale A, Drees C et al (2010) The dark side of relict species biology: cave animals as ancient lineages. In: Habel JC, Assmann T (eds) Relict species. Phylogeography and conservation biology. Springer, Berlin, pp 91–103

    Google Scholar 

  • Barr TC (1968) Cave ecology and the evolution of troglobites. Evol Biol 2:35–105

    Google Scholar 

  • Barr TC, Holsinger JR (1985) Speciation in cave faunas. Annu Rev Ecol Syst 16:313–337

    Article  Google Scholar 

  • Bauzà-Ribot MM, Juan C, Nardi F et al (2012) Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans. Curr Biol 22:2069–2074

    Article  PubMed  CAS  Google Scholar 

  • Bellés X (1987) Fauna cavernícola i intersticial de la Península Ibérica i les Illes Balears. Editorial Moll-CSIC, Palma de Mallorca

    Google Scholar 

  • Bilandzija H, Cetkovic H, Jeffery WR (2012) Evolution of albinism in cave planthoppers by a convergent defect in the first step of melanin biosynthesis. Evol Dev 14:196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botello A, Iliffe TM, Alvarez F et al (2012) Historical biogeography and phylogeny of Typhlatya cave shrimps (Decapoda: Atyidae) based on mitochondrial and nuclear data. J Biogeogr 40:594–607

    Article  Google Scholar 

  • Bowler PJ (1983) The eclipse of Darwinism. The John Hopkins University Press, Baltimore

    Google Scholar 

  • Cabidoche M (1966) Contribution à la connaissance de l’écologie des Trechinae cavernicoles pyrénéens. PhD Dissertation, Paris

    Google Scholar 

  • Casale A (2004) Due nuovi Coleotteri ipogei di Sardegna, Sardaphaenops adelphus n. sp. (Coleoptera Carabidae) e Patriziella muceddai n. sp. (Coleoptera Cholevidae), e loro significato biogeografico. Boll Soc Entomol Ital 136:3–31

    Google Scholar 

  • Christiansen K (1962) Proposition pour la classification des animaux cavernicoles. Spelunca 2:76–78

    Google Scholar 

  • Christiansen K (2012) Morphological adaptations. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Elsevier, Amsterdam, pp 517–528

    Chapter  Google Scholar 

  • Cieslak A, Fresneda J, Ribera I (2014) Life history evolution and diversification in Leptodirini cave beetles. Proc R Soc Lond B 281:20132978

    Article  Google Scholar 

  • Collin R, Miglietta M (2008) Reversing opinions on Dollo’s law. Trends Ecol Evol 23:602–609

    Article  PubMed  Google Scholar 

  • Crouau-Roy B (1989) Population studies on an endemic troglobitic beetle: geographical patterns of genetic variation, gene flow and genetic structure compared with morphometric data. Genetics 121:571–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Culver DC, Pipan T (2014) Shallow subterranean habitats: ecology, evolution, and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Culver DC, Pipan T (2015) Shifting paradigms of the evolution of cave life. Acta Carsol 44:415–425

    Google Scholar 

  • Culver DC, Kane TC, Fong DW (1995) Adaptation and natural selection in caves. The evolution of Gammarus minus. Harvard University Press, Boston

    Book  Google Scholar 

  • Danielopol DL, Pospisil P, Rouch R (2000) Biodiversity in groundwater: a large-scale view. Trends Ecol Evol 15:223–224

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. Murray, London

    Google Scholar 

  • de Peyerimhoff P (1906) Considérations sur les origines de la faune souterraine. Ann Soc Ent France 223–233

    Google Scholar 

  • Delay B (1975) Étude quantitative de populations monospécifiques de coléoptères hypogés par la méthode des marquages et recaptures. Ann Spéléol 30:195–206

    Google Scholar 

  • Delay B (1978) Milieu souterrain et écophysiologie de la reproduction et du développement des Coléoptères Bathysciinae hypogés. Mém Biospéol 5:1–349

    Google Scholar 

  • Deleurance S (1963) Recherches sur les Coléoptères troglobies de la sous-famille Bathysciinae. Annu Sci Nat Zool Paris Ser 12:1–172

    Google Scholar 

  • Dubois R (1892) Quelques faits relatifs à l’action de la lumière sur les Protées des grottes de la Carniole. Ann Soc Linn Lyon 39:53–56

    Article  Google Scholar 

  • Esmaeili-Rineh S, Sari A, Delić T et al (2015) Molecular phylogeny of the subterranean genus Niphargus (Crustacea: Amphipoda) in the Middle East: a comparison with European Niphargids. Zool J Linn Soc 175:812–826

    Article  Google Scholar 

  • Faille A, Pluot-Sigwalt D (2015) Convergent evolution in the reduction of ovariole number associated with subterranean life in cave beetles. PLoS One 10:e0131986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faille A, Ribera I, Deharveng L et al (2010) A molecular phylogeny shows the single origin of the Pyrenean subterranean Trechini ground beetles (Coleoptera: Carabidae). Mol Phylogenet Evol 54:97–106

    Article  CAS  PubMed  Google Scholar 

  • Faille A, Casale A, Ribera I (2011) Phylogenetic relationships of Western Mediterranean subterranean Trechini groundbeetles (Coleoptera: Carabidae). Zool Scr 40:282–295

    Article  Google Scholar 

  • Faille A, Bourdeau C, Fresneda J (2012) Molecular phylogeny of the Trechus brucki group, with description of two new species from the Pyreneo-Cantabrian area (France, Spain) (Coleoptera, Carabidae, Trechinae). ZooKeys 217:11–51

    Article  Google Scholar 

  • Faille A, Casale A, Balke M et al (2013) A molecular phylogeny of Alpine subterranean Trechini (Coleoptera: Carabidae). BMC Evol Biol 13:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Faille A, Andújar C, Fadrique F et al (2014) Late Miocene origin of an Ibero-Maghrebian clade of ground beetles with multiple colonisations of the subterranean environment. J Biogeogr 41:1979–1990

    Article  Google Scholar 

  • Faille A, Tänzler R, Toussaint EFA (2015) On the way to speciation: shedding light on the karstic phylogeography of the micro-endemic cave beetle Aphaenops cerberus in the Pyrenees. J Hered 106:692–699

    PubMed  Google Scholar 

  • Fejér A, Moldovan OT (2013) Population size and dispersal patterns for a Drimeotus (Coleoptera, Leiodidae, Leptodirini) cave population. Subterr Biol 11:31–44

    Article  Google Scholar 

  • Fišer C, Sket B, Trontelj P (2008) A phylogenetic perspective on 160 years of trouble taxonomy of Niphargus (Crustacea: Amphipoda). Zool Scr 37:665–680

    Article  Google Scholar 

  • Fresneda J, Salgado JM (2016) Catálogo de los Coleópteros Leiodidae Cholevinae Kirby, 1837 de la Península Ibérica e Islas Baleares. Barcelona, Spain, Monografies del Museu de Ciències Naturals de Barcelona 7

    Google Scholar 

  • Fresneda J, Hernando C, Lagar A et al (1997) Sistemática y geonemia de un coleóptero subterráneo de España: Oscadytes rovirai Lagar, 1975 (Coleoptera, Pterostichidae). Ann Soc Entomol Fr (NS) 33:205–213

    Google Scholar 

  • Fresneda J, Salgado JM, Ribera I (2007) Phylogeny of Western Mediterranean Leptodirini, with an emphasis on genital characters (Coleoptera: Leiodidae: Cholevinae). Syst Entomol 32:332–358

    Article  Google Scholar 

  • Fresneda J, Grebennikov VV, Ribera I (2011) The phylogenetic and geographic limits of Leptodirini (Insecta: Coleoptera: Leiodidae: Cholevinae), with a description of Sciaphyes shestakovi sp.n. from the Russian Far East. Arthropod Syst Phylo 69:99–123

    Google Scholar 

  • Fresneda J, Bourdeau C, Faille A (2015) Una nueva especie troglobiomorfa de Trechus Clairville, 1806 y evidencias de colonizaciones múltiples del medio subterráneo de los montes cantábricos (Coleoptera, Carabidae, Trechinae). Anim Biodiv Conserv 38:87–100

    Google Scholar 

  • Giachino PM, Vailati D (2010) The Subterranean environment. Hypogean life, concepts and collecting techniques. Verona, Italy, WBA Handbooks 3

    Google Scholar 

  • Goldberg EE, Igic B (2008) On phylogenetic tests of irreversible evolution. Evolution 62:2727–2741

    Article  PubMed  Google Scholar 

  • Gómez-Mestre I, Jovani R (2013) A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation. Proc R Soc B 280:20131869

    Article  PubMed  PubMed Central  Google Scholar 

  • Hampe A, Jump AS (2011) Climate relicts: past, present, future. Annu Rev Ecol Evol Syst 42:313–333

    Article  Google Scholar 

  • Hernando C, Ribera I, Vogler AP (1999) Alpine and cave or endogean habitats as postglacial refugia: examples from Palearctic ground beetles, with comments on their possible origins (Coleoptera: Carabidae). Coleopt Bull 53:31–39

    Google Scholar 

  • Ho SYW, Duchêne S (2014) Molecular-clock methods for estimating evolutionary rates and timescales. Mol Ecol 23:5497–5965

    Article  Google Scholar 

  • Howarth FG (1972) Cavernicoles in lava tubes on the Island of Hawaii. Science 175:325–326

    Article  CAS  PubMed  Google Scholar 

  • Jeannel R (1911) Révision des Bathysciinae (Coléoptères Silphides). Morphologie, Distribution géographique, Systématique. Arch Zool Exp Gén 47:1–641

    Google Scholar 

  • Jeannel R (1919) Diagnoses préliminaires de Trechinae [Col. Carabidae] cavernicoles nouveaux de France. Bull Soc Entomol Fr 253–255

    Google Scholar 

  • Jeannel R (1920) Étude sur le Trechus fulvus Dej. [Col. Carab.], sa phylogénie, son intérêt biogéographique. Serie Zoológica 41. Museo Nacional de Ciencias Naturales, Madrid, Spain

    Google Scholar 

  • Jeannel R (1926) Faune cavernicole de la France avec une étude des conditions d’existence dans le domaine souterrain. Lechevalier, Paris

    Google Scholar 

  • Jeannel R (1928) Monographie des Trechinae. Morphologie comparée et distribution d’un groupe de Coléoptères. Troisième Livraison: les Trechini cavernicoles L’Abeille 35:1–808

    Google Scholar 

  • Jeannel R (1942) La genèse des faunes terrestres, éléments de biogéographie. Presses Universitaires de France, Paris

    Google Scholar 

  • Jeannel R (1943) Les fossiles vivants des cavernes. Gallimard, Paris

    Google Scholar 

  • Jeannel R (1950) La marche de l’évolution. Presses Universitaires de France, Paris

    Google Scholar 

  • Jeannel R (1959) Situation géographique et peuplement des cavernes. Ann Spéléol 14:333–338

    Google Scholar 

  • Jeffery WR (2008) Emerging model systems in evo-devo: cavefish and microevolution of development. Evol Dev 10:265–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffery WR (2009) Regressive evolution in Astyanax cavefish. Annu Rev Genet 49:25–47

    Article  CAS  Google Scholar 

  • Jiménez-Moreno G, Fauquette S, Suc JP (2010) Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Rev Palaeob Palynol 162:403–415

    Article  Google Scholar 

  • Juberthie C, Decu V (eds) (1998) Encyclopaedia biospeleologica, Tome II. Société de Biospéologie, Moulis

    Google Scholar 

  • Juberthie C, Delay B, Bouillon M (1980) Sur l’existence d’un milieu souterrain superficiel en zone non calcaire. CR Acad Sci III-Vie 290:49–52

    Google Scholar 

  • Kowalko JE, Rohner N, Linden TA et al (2013) Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. Proc Natl Acad Sci USA 110:16933–16938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S (2005) Molecular clocks: four decades of evolution. Nat Rev Genet 6:654–662

    Article  CAS  PubMed  Google Scholar 

  • Lamarck JB (1809) Philosophie zoologique. Paris

    Google Scholar 

  • Lefébure T, Douady CJ, Gouy M et al (2006) Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Mol Ecol 15:1797–1806

    Article  CAS  PubMed  Google Scholar 

  • Leijs R, van Nes EH, Watts CH et al (2012) Evolution of blind beetles in isolated aquifers: a test of alternative modes of speciation. PLoS One 7:e34260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Ródriguez JM, Tierno de Figueroa JM (2012) Life in the dark: on the biology of the cavernicolous stonefly Protonemura gevi (Insecta, Plecoptera). Am Nat 180:684–691

    Article  PubMed  Google Scholar 

  • Mammola S, Isaia M, Arnedo MA (2015) Alpine endemic spiders shed light on the origin and evolution of subterranean species. PeerJ 3:e1384

    Article  PubMed  PubMed Central  Google Scholar 

  • Marmonier P, Vervier P, Gibert J et al (1993) Biodiversity in ground waters. Trends Ecol Evol 8:392–395

    Article  CAS  PubMed  Google Scholar 

  • Mazza G, Reboleira ASPS, Gonçalves F et al (2014) A new threat to groundwater ecosystems: first occurrences of the invasive crayfish Procambarus clarkii (Girard, 1852) in European caves. J Cave Karst Stud 76:62–65

    Article  Google Scholar 

  • Meleg IN, Zakšek V, Fišer C et al (2013) Can environment predict cryptic diversity? The case of Niphargus inhabiting Western Carpathian groundwater. PLoS One 8:e76760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan TH (1919) A critique of the theory of evolution. Princeton University Press, Princeton

    Google Scholar 

  • Niven JE (2008) Evolution: convergent eye losses in fishy circumstances. Curr Biol 18:R27–R29

    Article  CAS  PubMed  Google Scholar 

  • Ortuño VM, Gilgado JD, Jiménez-Valverde A et al (2013) The “Alluvial Mesovoid Shallow Substratum”, a new subterranean habitat. PLoS One 8:e76311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Packard AS (1888) The cave fauna of North America, with remarks on the anatomy of the brain and origin of the blind species. Mem Natl Acad Sci 4:1–156

    Google Scholar 

  • Peck SB, Finston TL (1993) Galápagos Islands troglobites: the questions of tropical troglobites, parapatric distributions with eyed-sister-species, and their origin by parapatric speciation. Mém Biospéol 20:19–37

    Google Scholar 

  • Pipan T, Culver DC (2012) Convergence and divergence in the subterranean realm: a reassessment. Biol J Linn Soc 107:1–14

    Article  Google Scholar 

  • Porter ML, Crandall KA (2003) Lost along the way: the significance of evolution in reverse. Trends Ecol Evol 18:541–547

    Article  Google Scholar 

  • Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 70:257–290

    Article  Google Scholar 

  • Protas ME, Jeffery WR (2012) Evolution and development in cave animals: from fish to crustaceans. WIREs Dev Biol 1:823–845

    Article  Google Scholar 

  • Protas ME, Hersey C, Kochanek D et al (2006) Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet 38:107–111

    Article  CAS  PubMed  Google Scholar 

  • Rabosky DL (2015) Challenges in the estimation of extinction from molecular phylogenies: a response to Beaulieu and O’Meara. Evolution 70:218–228

    Article  PubMed  Google Scholar 

  • Rabosky DL, Huang H (2016) A robust semi-parametric test for detecting trait-dependent diversification. Syst Biol 65:181–193

    Article  PubMed  Google Scholar 

  • Racovitza EG (1907) Essai sur les problèmes biospéologiques. Arch Zool Exp Gén VI:371–488

    Google Scholar 

  • Ribera I (2008) Habitat constraints and the generation of diversity in freshwater macroinvertebrates. In: Lancaster J, Briers RA (eds) Aquatic insects: challenges to populations. CAB International, Wallingford, pp 289–311

    Chapter  Google Scholar 

  • Ribera I, Faille A (2010) A new microphthalmic stygobitic Graptodytes Seidlitz from Morocco, with a molecular phylogeny of the genus (Coleoptera, Dytiscidae). Zootaxa 2641:1–14

    Article  Google Scholar 

  • Ribera I, Mateu J, Bellés X (2005) Phylogenetic relationships of Dalyat mirabilis Mateu, 2002, with a revised molecular phylogeny of ground beetles (Coleoptera, Carabidae). J Zoolog Syst Evol Res 43:284–296

    Article  Google Scholar 

  • Ribera I, Montagud S, Teruel S et al (2006) Molecular data supports the inclusion of Ildobates neboti Español in Zuphiini (Coleoptera: Carabidae: Harpalinae). Entomol Fenn 17:207–213

    Google Scholar 

  • Ribera I, Fresneda J, Bucur R et al (2010) Ancient origin of a western Mediterranean radiation of subterranean beetles. BMC Evol Biol 10:1–14

    Article  CAS  Google Scholar 

  • Rizzo V, Comas J, Fadrique F et al (2013) Early Pliocene range expansion of a clade of subterranean Pyrenean beetles. J Biogeogr 40:1861–1873

    Google Scholar 

  • Rizzo V, Sánchez-Fernández D, Fresneda J et al (2015) Lack of evolutionary adjustment to ambient temperature in highly specialized cave beetles. BMC Evol Biol 15:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero A (2009) Cave biology: life in darkness (Ecology, biodiversity and conservation), 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sánchez-Fernández D, Rizzo V, Cieslak A et al (2016) Thermal niche estimators and the capability of poor dispersal species to cope with climate change. Sci Rep 6:23381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stone G, French V (2003) Evolution: have wings come, gone and come again? Curr Biol 13:R436–R438

    Article  CAS  PubMed  Google Scholar 

  • Suc JP (1984) Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307:429–432

    Article  Google Scholar 

  • Trontelj P, Douady CJ, Fišer C et al (2009) A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshw Biol 54:727–744

    Article  CAS  Google Scholar 

  • Vandel A (1964) Biospéologie. La biologie des animaux cavernicoles. Gauthier-Villars, Paris

    Google Scholar 

  • Vargas AO (2009) Did Paul Kammerer discover epigenetic inheritance? A modern look at the controversial midwife toad experiments. J Exp Zool 312B:667–678

    Article  Google Scholar 

  • Vogler AP, Ribera I (2003) Evolutionary analysis of species richness patterns in aquatic beetles: why macroecology needs a historical perspective. In: Gaston KJ, Blackburn T (eds) Macroecology: concepts and consequences. Blackwell, Oxford, pp 17–30

    Google Scholar 

  • Whiting MF, Bradler S, Maxwell T (2003) Loss and recovery of wings in stick insects. Nature 421:264–267

    Article  CAS  PubMed  Google Scholar 

  • Wiens JJ, Chippindale PT, Hillis DM (2003) When are phylogenetic analyses misled by convergence? a case study in Texas cave salamanders. Syst Biol 52:501–514

    Article  PubMed  Google Scholar 

  • Wilkens H (1987) Genetic analysis of evolutionary processes. Int J Speleol 16:33–58

    Article  Google Scholar 

  • Zakšek V, Sket B, Trontelj P (2007) Phylogeny of the cave shrimp Troglocaris: evidence of a young connection between Balkans and Caucasus. Mol Phylogenet Evol 42:223–235

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our friends and colleagues Carmelo Andújar, Charles Bourdeau, Achille Casale, Jordi Comas, Carles Hernando, Valeria Rizzo and Enrique Valenzuela for their collaboration and ideas on the origin and evolution of the subterranean fauna, and Achille Casale for his comments to previous versions of the work. The SEM photographs of Fig. 10.6 were taken in the Phyletisches Museum (Jena) with the support of Rolf G. Beutel and Hans Pohl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Ribera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribera, I., Cieslak, A., Faille, A., Fresneda, J. (2018). Historical and Ecological Factors Determining Cave Diversity. In: Moldovan, O., Kováč, Ľ., Halse, S. (eds) Cave Ecology. Ecological Studies, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-98852-8_10

Download citation

Publish with us

Policies and ethics