Skip to main content

From Intuitive Spatial Measurement to Understanding of Units

  • Chapter
  • First Online:
Visualizing Mathematics

Part of the book series: Research in Mathematics Education ((RME))

Abstract

The current chapter outlines children’s transition from an intuitive understanding of spatial extent in infancy and toddlerhood to a more formal understanding of measurement units in school settings. In doing so, the chapter reveals that children’s early competence in intuitive spatial thinking does not translate directly into success with standardized measurement units without appropriate scaffolding and support. Findings from cognitive science and education research are integrated to identify (a) the nature of children’s difficulties with measurement units, (b) some effective instructional techniques involving spatial visualization, and (c) suggestions for how instruction could be further modified to address children’s specific conceptual difficulties with standardized measurement units. The chapter ends by suggesting that the most effective instruction may be that which directly harnesses the power of children’s early intuitive reasoning as those children navigate the transition into a deeper conceptual understanding of standardized units of measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baillargeon, R. (1987). Young infants’ reasoning about the physical and spatial properties of a hidden object. Cognitive Development, 2, 179–200.

    Article  Google Scholar 

  • Baillargeon, R., & Graber, M. (1987). Where’s the rabbit? 5.5-month-old infants’ representation of the height of a hidden object. Cognitive Development, 2, 375–392.

    Article  Google Scholar 

  • Baillargeon, R., Needham, A., & DeVos, J. (1992). The development of young infants’ intuitions about support. Early Development and Parenting, 1, 69–78.

    Article  Google Scholar 

  • Barrantes, M., & Blanco, L. J. (2006). A study of prospective teachers’ conceptions of teaching and learning school geometry. Journal of Mathematics Teacher Education, 9, 411–436.

    Article  Google Scholar 

  • Barrett, J., Clements, D., Sarama, J., Cullen, C., McCool, J., Witkowski, C., & Klanderman, D. (2012). Evaluating and improving a learning trajectory for linear measurement in elementary grades 2 and 3: A longitudinal study. Mathematical Thinking and Learning, 14(1), 28–54.

    Article  Google Scholar 

  • Barth, H., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14, 125–135.

    Article  Google Scholar 

  • Bragg, P., & Outhred, L. (2004). A measure of rulers—The importance of units in a measure. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (pp. 159–166). Bergen, Norway.

    Google Scholar 

  • Brooks, N., Pogue, A., & Barner, D. (2011). Piecing together numerical language: Children’s use of default units in early counting and quantification. Developmental Science, 14, 44–57. https://doi.org/10.1111/j.1467-7687.2010.00954.x

    Article  Google Scholar 

  • Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: Where young children go wrong. Developmental Psychology, 44(5), 1478.

    Article  Google Scholar 

  • Bryant, P. E., & Kopytynska, H. (1976). Spontaneous measurement by young children. Nature, 260(5554), 773–773.

    Article  Google Scholar 

  • Carpenter, T., Lindquist, M., Brown, C., Kouba, V., Edward, A., & Swafford, J. (1988). Results of the fourth NAEP assessment of mathematics: Trends and conclusions. Arithmetic Teacher, 36, 38–41.

    Google Scholar 

  • Clements, D. H. (1999). Teaching length measurement: Research challenges. School Science and Mathematics, 99(1), 5–11.

    Article  Google Scholar 

  • Clements, D. H. (2003). Learning and teaching measurement (2003 yearbook). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Clements, D. H., & Battista, M. T. (1989). Learning of geometric concepts in a Logo environment. Journal for Research in Mathematics Education, 20(5), 450–467.

    Article  Google Scholar 

  • Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420–464). New York, NY: Macmillan.

    Google Scholar 

  • Clements, D. H., & Bright, G. (2003). Learning and teaching measurement: 2003 yearbook. Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Clements, D. H., & Burns, B. A. (2000). Students’ development of strategies for turn and angle measure. Educational Studies in Mathematics, 41(1), 31–45.

    Article  Google Scholar 

  • Clements, D. H., & McMillen, S. (1996). Rethinking “concrete” manipulatives. Teaching Children Mathematics, 2(5), 270–279.

    Google Scholar 

  • Clements, D. H., & Stephan, M. (2004). Measurement in pre-K to grade 2 mathematics. Engaging young children in mathematics: Standards for early childhood mathematics education (pp. 299–317).

    Google Scholar 

  • Cohen, L. B., & Younger, B. A. (1984). Infant perception of angular relations. Infant Behavior and Development, 7(1), 37–47.

    Article  Google Scholar 

  • Congdon, E.L. & Levine, S.C. (2017, April). Making measurement mistakes: How actions and gestures can rectify common student misconceptions. In B. Kolvoord (Chair), Supporting Spatial Thinking to Enhance STEM Learning. Symposium conducted at the Annual Meeting of the American Educational Research Association, San Antonio, TX.

    Google Scholar 

  • Congdon, E. L., Kwon, M. K., & Levine, S. C. (2018). Learning to measure through action and gesture: Children’s prior knowledge matters. Cognition, 180, 182–190.

    Article  Google Scholar 

  • Davis, C., & Uttal, D. H. (2007). Map use and development of spatial cognition. In J. Plumert & J. Spencer (Eds.), The emerging spatial mind (pp. 219–247). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Davydov, V. V. (1975). The psychological characteristics of the prenumerical period of mathematics instruction. In L. P. Steffe (Ed.), Soviet studies in the psychology of learning and teaching mathematics (Vol. 7, pp. 109–206). Chicago: The University of Chicago Press.

    Google Scholar 

  • Duffy, S., Huttenlocher, J., & Levine, S. (2005). It is all relative: How young children encode extent. Journal of Cognition and Development, 6(1), 51–63.

    Article  Google Scholar 

  • Duffy, S., Huttenlocher, J., Levine, S. C., & Duffy, R. (2005). How infants encode spatial extent. Infancy, 8, 81–90.

    Article  Google Scholar 

  • Gal’perin, P. Y., & Georgiev, L. S. (1969). The formation of elementary mathematical notions. In J. Kilpatrick & I. Wirszup (Eds.), Soviet studies in the psychology of learning and teaching mathematics. Chicago: The University of Chicago.

    Google Scholar 

  • Gao, F., Levine, S., & Huttenlocher, J. (2000). What do infants know about continuous quantity? Journal of Experimental Child Psychology, 77, 20–29.

    Article  Google Scholar 

  • Gibson, D. J., Congdon, E. L., & Levine, S. C. (2015). The effects of word-learning biases on children’s concept of angle. Child Development, 86(1), 319–326.

    Article  Google Scholar 

  • Hiebert, J. (1984). Why do some children have trouble learning measurement concepts? Arithmetic Teacher, 3(7), 19–24.

    Google Scholar 

  • Hollich, G., Golinkoff, R. M., & Hirsh-Pasek, K. (2007). Young children associate novel words with complex objects rather than salient parts. Developmental Psychology, 43, 1051–1061. https://doi.org/10.1037/0012-1649.43.5.1051

    Article  Google Scholar 

  • Huang, H. M. E., & Witz, K. G. (2011). Developing children’s conceptual understanding of area measurement: A curriculum and teaching experiment. Learning and Instruction, 21(1), 1–13.

    Article  Google Scholar 

  • Hunting, R. P., & Sharpley, C. F. (1988). Fraction knowledge in preschool children. Journal for Research in Mathematics Education, 19(2), 175–180.

    Article  Google Scholar 

  • Huntley-Fenner, G. (2001). Why count stuff? Young preschoolers do not use number for measurement in continuous dimensions. Developmental Science, 4(4), 456–462.

    Article  Google Scholar 

  • Huttenlocher, J., Duffy, S., & Levine, S. (2002). Infants and toddlers discriminate amount: Are they measuring? Psychological Science, 13, 244–249.

    Article  Google Scholar 

  • Huttenlocher, J., Newcombe, N., & Sandberg, E. H. (1994). The coding of spatial location in young children. Cognitive Psychology, 27, 115–148.

    Article  Google Scholar 

  • Huttenlocher, J., Newcombe, N., & Vasilyeva, M. (1999). Spatial scaling in young children. Psychological Science, 10(5), 393–398.

    Article  Google Scholar 

  • Izard, V., O’Donnell, E., & Spelke, E. S. (2014). Reading angles in maps. Child Development, 85(1), 237–249.

    Article  Google Scholar 

  • Izard, V., & Spelke, E. S. (2009). Development of sensitivity to geometry in visual forms. Human Evolution, 23(3), 213.

    Google Scholar 

  • Kamii, C. (2006). Measurement of length: How can we teach it better? Teaching Children Mathematics, 13(3), 154–158.

    Google Scholar 

  • Kawanaka, T., Stigler, J. W., & Hiebert, J. (1999). Studying mathematics classrooms in Germany, Japan and the United States: Lessons from the TIMSS videotape study. In G. Kaiser, E. Luna, & I. Huntley (Eds.), International comparisons in mathematics education (Vol. 11, p. 86). London, UK: Falmer.

    Google Scholar 

  • Kerslake, D. (1986). Fractions: Children’s strategies and errors. A Report of the Strategies and Errors in Secondary Mathematics Project. NFER-NELSON Publishing Company, Ltd., Windsor, England.

    Google Scholar 

  • Kotovsky, L., & Baillargeon, R. (1998). The development of calibration-based reasoning about collision events in young infants. Cognition, 67, 311–351.

    Article  Google Scholar 

  • Kwon, M. K., Levine, S. C., Ratliff, K., & Snyder, C. (2011, January). The importance of alignable differences in teaching linear measurement. In: Proceedings of the Cognitive Science Society (Vol. 33, p. 1156).

    Google Scholar 

  • Kwon, M. K., Ping, R., Congdon, E. L., & Levine, S. C. (under revision). Overturning children’s misconceptions about ruler measurement units: The power of disconfirming evidence.

    Google Scholar 

  • Landau, B., Smith, L. B., & Jones, S. S. (1988). The importance of shape in early lexical learning. Cognitive Development, 3, 299–321. https://doi.org/10.1016/0885-2014(88)90014-7

    Article  Google Scholar 

  • Lehrer, R. (2003). Developing understanding of measurement. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 179–192). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Lehrer, R., Jenkins, M., & Osana, H. (1998). Longitudinal study of children’s reasoning about space and geometry. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (Vol. 1, pp. 137–167). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Liben, L. S., & Downs, R. M. (1993). Understanding person-space-map relations: Cartographic and developmental perspectives. Developmental Psychology, 29(4), 739.

    Article  Google Scholar 

  • Liben, L. S., & Yekel, C. A. (1996). Preschoolers’ understanding of plan and oblique maps: The role of geometric and representational correspondence. Child Development, 67(6), 2780–2796.

    Article  Google Scholar 

  • Lin, P.-J., & Tsai, W.-H. (2003). Fourth graders’ achievement of mathematics in TIMSS 2003 field test. (in Chinese). Science Education Monthly, 258, 2e20.

    Google Scholar 

  • Lindquist, M., & Kouba, V. (1989). Measurement. In M. Linduist (Ed.), Results from the fourth mathematics assessment of the National Assessment of Educational Progress (pp. 35–43). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Lourenco, S. F., & Huttenlocher, J. (2008). The representation of geometric cues in infancy. Infancy, 13(2), 103–127.

    Article  Google Scholar 

  • Markman, E. M., & Hutchinson, J. E. (1984). Children’s sensitivity to constraints on word meaning: Taxonomic versus thematic relations. Cognitive Psychology, 16, 1–27. https://doi.org/10.1016/0010-0285(84)90002-1

    Article  Google Scholar 

  • Martin, W. G., & Strutchens, M. E. (2000). Geometry and measurement. Results from the seventh mathematics assessment of the National Assessment of Educational Progress (pp. 193–234).

    Google Scholar 

  • Miller, K. F. (1989). Measurement as a tool for thought: The role of measuring procedures in children’s understanding of quantitative invariance. Developmental Psychology, 25, 589–600.

    Article  Google Scholar 

  • Mitchelmore, M. C., & White, P. (2000). Development of angle concepts by progressive abstraction and generalisation. Educational Studies in Mathematics, 41, 209–238. https://doi.org/10.1023/A:1003927811079

    Article  Google Scholar 

  • Mix, K. S., Levine, S. C., & Newcombe, N. S. (2016). Development of quantitative thinking across correlated dimensions. In A. Henik (Ed.), Continuous issues in numerical cognition: How many or how much (pp. 1–33). San Diego: Academic.

    Google Scholar 

  • Mix, K. S., & Paik, J. H. (2008). Do Korean fraction names promote part-whole reasoning? Journal of Cognitive Development, 9, 145–170.

    Article  Google Scholar 

  • Möhring, W., Frick, A., Newcombe, N., & Levine, S. C. (2015). Spatial proportional reasoning is associated with formal knowledge about fractions. Journal of Cognition and Development, 17(1), 67–84.

    Article  Google Scholar 

  • Mullis, I., Martin, M., Gonzalez, E., & Chrostowski, S. (2004). TIMSS 2003 international mathematics report: Findings from IEA’s trends in international mathematics and science study at the fourth and eighth grades. Chestnut Hill, MA: Boston College. National Center for Educational Statistics.

    Google Scholar 

  • National Center for Educational Statistics. (2009). NAEP Questions. Retrieved on September 3, 2017, from http://nces.ed.gov/nationsreportcard/itmrls/startsearch.asp

  • Newcombe, N., Huttenlocher, J., & Leamonth, A. (2000). Infants’ coding of location in continuous space. Infant Behavior and Development, 22, 483–510.

    Article  Google Scholar 

  • Newcombe, N. S., Levine, S. C., & Mix, K. S. (2015). Thinking about quantity: The intertwined development of spatial and numerical cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 6(6), 491–505.

    Google Scholar 

  • Newcombe, N. S., Sluzenski, J., & Huttenlocher, J. (2005). Pre-existing knowledge versus on-line learning: What do infants really know about spatial location? Psychological Science, 16, 222–227. https://doi.org/10.1111/j.0956-7976.2005.00807.x

    Article  Google Scholar 

  • Nunes, T., & Bryant, P. (1996). Children doing mathematics. Wiley-Blackwell.

    Google Scholar 

  • Piaget, J., Inhelder, B., & Szeminska, A. (1960). The child’s conception of geometry. New York: Basic Books.

    Google Scholar 

  • Ramscar, M., Dye, M., Popick, H. M., & O’Donnell-McCarthy, F. (2011). The enigma of number: Why children find the meanings of even small number words hard to learn and how we can help them do better. PLoS One, 6(7), e22501.

    Article  Google Scholar 

  • Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (Vol. 2, pp. 64–99). New York: Appleton Century Crofts.

    Google Scholar 

  • Shipley, E. F., & Shepperson, B. (1990). Countable entities: Developmental changes. Cognition, 34, 109–136.

    Article  Google Scholar 

  • Shusterman, A., Ah Lee, S., & Spelke, E. S. (2008). Young children’s spontaneous use of geometry in maps. Developmental Science, 11(2), F1–F7.

    Article  Google Scholar 

  • Slater, A., Mattock, A., Brown, E., & Bremner, J. G. (1991). Form perception at birth: Cohen and Younger (1984) revisited. Journal of Experimental Child Psychology, 51, 395–406.

    Article  Google Scholar 

  • Slater, A., Mattock, A., Brown, E., Burnham, D., & Young, A. (1991). Visual processing of stimulus compounds in newborn infants. Perception, 20(1), 29–33.

    Article  Google Scholar 

  • Smith, J. P., Males, L. M., Dietiker, L. C., Lee, K., & Mosier, A. (2013). Curricular treatments of length measurement in the United States: Do they address known learning challenges? Cognition and Instruction, 31(4), 388–433.

    Article  Google Scholar 

  • Solomon, T. L., Vasilyeva, M., Huttenlocher, J., & Levine, S. C. (2015). Minding the gap: Children’s difficulty conceptualizing spatial intervals as linear measurement units. Developmental Psychology, 51(11), 1564.

    Article  Google Scholar 

  • Sophian, C. (2007). The origins of mathematical knowledge in childhood. Lawrence Erlbaum Associates.

    Google Scholar 

  • Sophian, C., Garyantes, D., & Chang, C. (1997). When three is less than two: Early developments in children’s understanding of fractional quantities. Developmental Psychology, 33(5), 731.

    Article  Google Scholar 

  • Spelke, E. S., Gilmore, C. K., & McCarthy, S. (2001). Kindergarten children’s sensitivity to geometry in maps. Developmental Science, 14, 809–821.

    Article  Google Scholar 

  • Spelke, E., Lee, S. A., & Izard, V. (2010). Beyond core knowledge: Natural geometry. Cognitive Science, 34, 863–884. https://doi.org/10.1111/j.1551-6709.2010.01110.x

    Article  Google Scholar 

  • Strutchens, M. E., Harris, K. A., & Martin, W. G. (2001). Assessing geometry and measurement. Understanding using manipulatives. Mathematics Teaching in the Middle School, 6, 402–405.

    Google Scholar 

  • Strutchens, M. E., Martin, W. G., & Kenney, P. A. (2003). What students know about measurement: perspectives from the national assessments of educational progress. In D. H. Clements & G. Bright (Eds.), Learning and teaching measurement. 2003 Year book (pp. 195–207). Reston, VA: NCTM.

    Google Scholar 

  • Tipps, S., Johnson, A., & Kennedy, L. M. (2011). Guiding children’s learning of mathematics. Belmont, CA: Cengage Learning.

    Google Scholar 

  • TIMSS 2011 Assessment. Copyright © 2012 International Association for the Evaluation of Educational Achievement (IEA). Publisher: TIMSS & PIRLS International Study Center, Lynch School of Education, Boston College, Chestnut Hill, MA and International Association for the Evaluation of Educational Achievement (IEA), IEA Secretariat, Amsterdam, the Netherlands.

    Google Scholar 

  • Vasilyeva, M., Casey, B., Dearing, E., & Ganley, C. (2009). Measurement skills in low-income elementary school students: Exploring the nature of gender differences. Cognition and Instruction, 27, 401–428.

    Article  Google Scholar 

  • Vasilyeva, M., Duffy, S., & Huttenlocher, J. (2007). Developmental changes in the use of absolute and relative information: The case of spatial extent. Journal of Cognition and Development, 8, 455–471.

    Article  Google Scholar 

  • Vasilyeva, M., & Lourenco, S. F. (2012). Development of spatial cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 3(3), 349–362.

    Google Scholar 

  • Wilson, P. S., & Rowland, R. (1993). Teaching measurement. In R. J. Jensen (Ed.), Research ideas for the classroom: Early childhood mathematics (Vol. 30, pp. 171–194). Old Tappan, NJ: Macmillan.

    Google Scholar 

  • Yuzawa, M., Bart, W. M., & Yuzawa, M. (2000). Development of the ability to judge relative areas: Role of the procedure of placing one object on another. Cognitive Development, 15(2), 135–152.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliza L. Congdon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Congdon, E.L., Vasilyeva, M., Mix, K.S., Levine, S.C. (2018). From Intuitive Spatial Measurement to Understanding of Units. In: Mix, K., Battista, M. (eds) Visualizing Mathematics. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-319-98767-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98767-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98766-8

  • Online ISBN: 978-3-319-98767-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics