Skip to main content

Scaling-Up Enabling the Full Potential of Industrial Applications of Ultrasound and Hydrodynamic Cavitation

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((ULSONO))

Abstract

Nowadays, the requirement for process intensification in the chemical industry no longer only meets the economic considerations but also at the necessity to anchoring the industrial production in a sustainable approach, cleaner and more energy efficient technology. As we have seen in previous chapters, the phenomenon of cavitation, whether of hydrodynamic or ultrasonic origin, is likely to generate beneficial effects recognized as conducive for scale-up operations. Technically, the extrapolation of laboratory experiments on an industrial scale consists in taking into account the numerous constraints related to the production of large quantities of materials (impurities of the raw materials, duration of process, reliability, etc.) in large reactors. Thus, the development of a production line requires the realization of a pilot unit that will solve the problems encountered during the climb to scale-up. These miniaturized replicas have variable production capacities ranging from kilogram to several tens of kilograms and can be carried out in a research unit. Therefore, many laboratories have been engaged in this way for a few years and the number of publications on pilot units, whether dedicated to ultrasonic or hydrodynamic processes, has considerably increased these last years. This chapter is meant to be didactic and is not the object of a detailed development of cavitation phenomenon scaling operations. In this sense, he is interested in the basic considerations of cavitation phenomena on the industrial scale through some reminders and representative examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Badve M, Gogate P, Pandit A, Csoka L (2013) Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep Purif Technol 106:15–21

    Article  CAS  Google Scholar 

  • Cao H, Wan M, Qiao Y, Zhang S, Li R (2012) Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field. Ultrason Sonochem 19:257–263

    Article  CAS  Google Scholar 

  • Carpenter J, Badve M, Rajoriya S, George S, Saharan VK, Pandit AB (2016) Hydrodynamic cavitation: an emerging technology for the intensification of various chemical and physical processes in a chemical process industry. Rev Chem Eng 33:433–470

    Google Scholar 

  • Casadonte DJ Jr, Flores M, Petrier C (2005) Enhancing sonochemical activity in aqueous media using power-modulated pulsed ultrasound: an initial study. Ultrason Sonochem 12:147–152

    Article  CAS  Google Scholar 

  • Cintas P, Mantegna S, Calcio Gaudino E, Cravotto G (2010) A new pilot flow reactor for high-intensity ultrasound irradiation. Application to the synthesis of biodiesel. Ultrason Sonochem 17:985–989

    Article  CAS  Google Scholar 

  • Crudo D, Bosco V, Cavaglià G, Grillo G, Mantegna S, Cravotto G (2016) Process intensification in biodiesel production with a rotor-stator type generator of hydrodynamic cavitation. Ultrason Sonochem 33:220–225

    Article  CAS  Google Scholar 

  • De La Rochebrochard S, Suptil J, Blais JF, Naffrechoux E (2012) Sonochemical efficiency dependence on liquid height and frequency in an improved sonochemical reactor. Ultrason Sonochem 19:280–285

    Article  Google Scholar 

  • Dular M, Griessler-Bulc T, Gutierez I, Heath E, Kosjek T, Krivograd Klemencic A, Oder M, Petkovšek M, Raki N, Ravnikar M, Šarc A, Širok B, Zupanc M, Zitnik M, Kompare B (2016) Use of hydrodynamic cavitation in (waste) water treatment. Ultrason Sonochem 29:577–588

    Article  CAS  Google Scholar 

  • Gallego-Juárez JA, Rodriguez G, Acosta V, Riera E (2010) Power ultrasonic transducers with extensive radiators for industrial processing. Ultrason Sonochem 17:953–964

    Article  Google Scholar 

  • Gogate PR, Sutkar VS, Pandit AB (2011) Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 166:1066–1082

    Article  CAS  Google Scholar 

  • Gonçalves I, Herrero-Yniesta V, Perales Arce I, Escrigas Castañeda M, Cavaco-Paulo A, Silva C (2014) Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics. Ultrason Sonochem 21:1535–1543

    Article  Google Scholar 

  • Gondrexon N, Renaudin V, Petrier C, Boldo P, Bernis A, Gonthier Y (1999) Degradation of pentachlorophenol aqueous solutions using a continuous flow ultrasonic reactor: experimental performance and modelling. Ultrason Sonochem 5:125–131

    Article  CAS  Google Scholar 

  • Gonze E, Boldo P, Gonthier Y, Bernis A (1997) Étude de l’oxydation du pentachlorophénol dans différentes géométries de réacteurs à ultrasons de haute fréquence. Can J Chem Eng 75:245–255

    Article  CAS  Google Scholar 

  • Hunicke RL (1990) Industrial applications of high power ultrasound for chemical reactions. Ultrasonics 28:291–294

    Article  CAS  Google Scholar 

  • Jamshidi R, Pohl B, Peuker UA, Brenner G (2012) Numerical investigation of sonochemical reactors considering the effect of inhomogeneous bubble clouds on ultrasonic wave propagation. Chem Eng J 189–190:364–375

    Article  Google Scholar 

  • Kumar PS, Pandit AB (1999) Modeling hydrodynamic cavitation. Chem Eng Technol 22:1017–1027

    Article  CAS  Google Scholar 

  • Leong T, Coventry M, Swiergon P, Knoezer K, Juliano P (2015) Ultrasound pressure distributions generated by high frequency transducers in large reactors. Ultrason Sonochem 27:22–29

    Article  CAS  Google Scholar 

  • Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part II: primary Bjerkness force and bubble structures. Ultrason Sonochem 19:66–76

    Article  CAS  Google Scholar 

  • Masson TJ, Chemat F, Ashokkumar M (2015) Power ultrasonics for food processing. Power Ultrasonics, Elsevier Ltd, pp 815–843

    Book  Google Scholar 

  • Mhetre AS, Gogate PR (2014) New design and mapping of sonochemical reactor operating at capacity of 72 L. Chem Eng J 258:69–76

    Article  CAS  Google Scholar 

  • Pandit AB, Joshi JB (1993) Hydrolysis of fatty oils: effect of cavitation. Chem Eng Sci 48:3440–3442

    Article  CAS  Google Scholar 

  • Paquin M, Loranger E, Hannaux V, Chabot B, Daneault C (2013) The use of Weissler method for scale-up a kraft pulp oxidation by TEMPO-mediated system from a batch mode to a continuous flow-through sonoreactor. Ultrason Sonochem 20:103–108

    Article  CAS  Google Scholar 

  • Patist A, Bates D (2011) Industrial applications of high power ultrasonics. In: Ultrasound technologies for food and bioprocessing, food engineering series. Springer, New York, NY, pp 599–616

    Google Scholar 

  • Perincek S, Uzgur AE, Duran K, Dogan A, Korlu AE, Bahtiyari IM (2009) Design parameter investigation of industrial size ultrasound textile treatment bath. Ultrason Sonochem 16:184–189

    Article  CAS  Google Scholar 

  • Peshkovsky AS, Tryak S (2014) Continuous-flow production of a pharmaceutical nanoemulsion by high-amplitude ultrasound: Process scale-up. Chem Eng Process 82:132–136

    Article  CAS  Google Scholar 

  • Petkovšek M, Zupanc M, Dular M, Kosjek T, Heath E, Kompare B, Širok B (2013) Rotation generator of hydrodynamic cavitation for water treatment. Sep Purif Technol 118:415–423

    Article  Google Scholar 

  • Rinaldi L, Wu Z, Giovando S, Bracco M, Crudo D, Bosco V, Cravotto G (2017) Oxidative polymerization of waste cooking oil with air under hydrodynamic cavitation. Green Process Synth. 6:425–432

    CAS  Google Scholar 

  • Saracco G, Arzano F (1968) Idrogenazione di olio di oliva in presenza di ultrasuoni. La Chimica e L’Industria 50:314–316

    CAS  Google Scholar 

  • Smagowska B (2013) Ultrasonic noise sources in a work environment. Arch Acoust 38:169–176

    Article  Google Scholar 

  • Suslick KS, Mdleleni MM, Ries JT (1997) Chemistry induced by hydrodynamic cavitation. J Am Chem Soc 119:9303–9304

    Article  CAS  Google Scholar 

  • Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38:1215–1249

    Article  CAS  Google Scholar 

  • Tiong TJ, Liew DKL, Gondipon RC, Wong RW, Loo YL, Lok MST, Manickam S (2017) Identification of active sonochemical zones in triple frequency ultrasonic reactor via physical and chemical characterization techniques. Ultrason Sonochem 35:569–576

    Article  CAS  Google Scholar 

  • Vanhille C, Campos-Pozuelo C (2014) Numerical simulations of the primary Bjerknes force experienced by bubbles in a standing ultrasonic field: nonlinear vs. linear. Wave Motion 51:1127–1137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Lévêque .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lévêque, JM., Cravotto, G., Delattre, F., Cintas, P. (2018). Scaling-Up Enabling the Full Potential of Industrial Applications of Ultrasound and Hydrodynamic Cavitation. In: Organic Sonochemistry. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-98554-1_8

Download citation

Publish with us

Policies and ethics