Skip to main content

Mitigation of Speckle Noise in Optical Coherence Tomograms

  • Chapter
  • First Online:
Optics, Photonics and Laser Technology

Abstract

Optical Coherence Tomography (OCT) is a promising high-resolution imaging technique that works based on low coherent interferometry. However, like other low coherent imaging modalities, OCT suffers from an artifact called, speckle. Speckle reduces the detectability of diagnostically relevant features in the tissue. Retinal optical coherence tomograms are of a great importance in detecting and diagnosing eye diseases. Different hardware or software based techniques are devised in literatures to mitigate speckle noise. The ultimate aim of any software-based despeckling technique is to suppress the noise part of speckle while preserves the information carrying portion of that. In this chapter, we reviewed the most prominent speckle reduction methods for OCT images to date and then present a novel and intelligent speckle reduction algorithm to reduce speckle in OCT images of retina, based on an ensemble framework of Multi-Layer Perceptron (MLP) neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.G. Cucu, A.G. Podoleanu, J.A. Rogers, J. Pedro, R.B. Rosen, Combined confocal/en face T-scan-based ultrahigh-resolution optical coherence tomography in vivo retinal imaging. Opt. Lett. 31, 1684–1686 (2006)

    Article  ADS  Google Scholar 

  2. E. Hecht, A. Zajac, Optics (1974)

    Google Scholar 

  3. A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography-principles and applications. Rep. Prog. Phys. 66, 239 (2003)

    Article  ADS  Google Scholar 

  4. J.M. Schmitt, Optical coherence tomography (OCT): a review. IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999)

    Article  ADS  Google Scholar 

  5. A.G. Podoleanu, Optical coherence tomography. Br. J. Radiol. (2014)

    Google Scholar 

  6. M. Hughes, High lateral resolution imaging with dynamic focus. Ph.D. thesis, University of Kent (2010)

    Google Scholar 

  7. V.V. Tuchin, Coherent-Domain Optical Methods: Biomedical Diagnostics, Environment and Material Science (Springer Science & Business Media, 2004)

    Google Scholar 

  8. B.K. Alsberg, A.M. Woodward, M.K. Winson, J. Rowland, D.B. Kell, Wavelet denoising of infrared spectra. Analyst 122, 645–652 (1997)

    Article  ADS  Google Scholar 

  9. R. Leitgeb, C. Hitzenberger, A. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003)

    Article  ADS  Google Scholar 

  10. M.R. Avanaki, A. Hojjat, A.G. Podoleanu, Investigation of computer-based skin cancer detection using optical coherence tomography. J. Mod. Opt. 56, 1536–1544 (2009)

    Article  ADS  Google Scholar 

  11. M.R. Avanaki, A. Hojjatoleslami, M. Sira, J.B. Schofield, C. Jones, A.G. Podoleanu, Investigation of basal cell carcinoma using dynamic focus optical coherence tomography. Appl. Opt. 52, 2116–2124 (2013)

    Article  ADS  Google Scholar 

  12. J. Welzel, Optical coherence tomography in dermatology: a review. Skin Res. Technol. 7, 1–9 (2001)

    Article  Google Scholar 

  13. L.L. Otis, M.J. Everett, U.S. Sathyam, B.W. Colston, optical coherence tomography: a new imaging: technology for dentistry. J. Am. Dent. Assoc. 131, 511–514 (2000)

    Article  Google Scholar 

  14. G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, J.G. Fujimoto, In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997)

    Article  Google Scholar 

  15. I.-K. Jang, B.E. Bouma, D.-H. Kang, S.-J. Park, S.-W. Park, K.-B. Seung, K.-B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J. Am. Coll. Cardiol. 39, 604–609 (2002)

    Article  Google Scholar 

  16. W. Drexler, J.G. Fujimoto, Optical coherence tomography in ophthalmology. J. Biomed. Opt. 12, 041201-041201-2 (2007)

    Article  ADS  Google Scholar 

  17. J.G. Fujimoto, C. Pitris, S.A. Boppart, M.E. Brezinski, Optical Coherence Tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2, 9–25 (2000)

    Article  Google Scholar 

  18. A.M. Zysk, F.T. Nguyen, A.L. Oldenburg, D.L. Marks, S.A. Boppart, Optical coherence tomography: a review of clinical development from bench to bedside. J. Biomed. Opt. 12, 051403-051403-21 (2007)

    Article  ADS  Google Scholar 

  19. W. Drexler, J.G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008)

    Google Scholar 

  20. J.M. Schmitt, A. Knuttel, M. Yadlowsky, M. Eckhaus, Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys. Med. Biol. 39, 1705 (1994)

    Article  Google Scholar 

  21. L. Thrane, M.H. Frosz, T.M. Jørgensen, A. Tycho, H.T. Yura, P.E. Andersen, Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures. Opt. Lett. 29, 1641–1643 (2004)

    Article  ADS  Google Scholar 

  22. J.M. Schmitt, S. Xiang, K.M. Yung, Speckle in optical coherence tomography. J. Biomed. Opt. 4, 95–105 (1999)

    Article  ADS  Google Scholar 

  23. M.R. Avanaki, A.G. Podoleanu, J.B. Schofield, C. Jones, M. Sira, Y. Liu, A. Hojjat, Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens-Fresnel theorem. Appl. Opt. 52, 1574–1580 (2013)

    Article  ADS  Google Scholar 

  24. A. Hojjatoleslami, M.R. Avanaki, OCT skin image enhancement through attenuation compensation. Appl. Opt. 51, 4927–4935 (2012)

    Article  ADS  Google Scholar 

  25. J.W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007)

    Google Scholar 

  26. M.-R. Nasiri-avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, A. Podoleanu, Optical coherence tomography system optimization using simulated annealing algorithm, in Proceedings of Mathematical Methods and Applied Computing, (WSEAS, 2009) (2009), pp. 669–674

    Google Scholar 

  27. R.F. Wagner, S.W. Smith, J.M. Sandrik, H. Lopez, Statistics of speckle in ultrasound B-scans. IEEE Trans. Sonics Ultrason. 30, 156–163 (1983)

    Article  Google Scholar 

  28. S. Hojjatoleslami, M. Avanaki, A.G. Podoleanu, Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm. Appl. Opt. 52, 5663–5670 (2013)

    Article  ADS  Google Scholar 

  29. D.C. Adler, T.H. Ko, J.G. Fujimoto, Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter. Opt. Lett. 29, 2878–2880 (2004)

    Article  ADS  Google Scholar 

  30. M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography of the human retina. Arch. Ophthalmol. 113, 325–332 (1995)

    Article  Google Scholar 

  31. N. Iftimia, B.E. Bouma, G.J. Tearney, Speckle reduction in optical coherence tomography by “path length encoded” angular compounding. J. Biomed. Opt. 8, 260–263 (2003)

    Article  ADS  Google Scholar 

  32. T.M. Jørgensen, L. Thrane, M. Mogensen, F. Pedersen, P.E. Andersen, Speckle reduction in optical coherence tomography images of human skin by a spatial diversity method, in European Conference on Biomedical Optics (Optical Society of America, 2007), 6627_22

    Google Scholar 

  33. P.A. Magnin, O.T. Von Ramm, F.L. Thurstone, Frequency compounding for speckle contrast reduction in phased array images. Ultrason. Imaging 4, 267–281 (1982)

    Article  Google Scholar 

  34. H.L. Resnikoff, O. Raymond Jr., Wavelet Analysis: The Scalable Structure of Information (Springer Science & Business Media, 2012)

    Google Scholar 

  35. D.J. Smithies, T. Lindmo, Z. Chen, J.S. Nelson, T.E. Milner, Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation. Phys. Med. Biol. 43, 3025 (1998)

    Article  Google Scholar 

  36. R.K. Wang, Reduction of speckle noise for optical coherence tomography by the use of nonlinear anisotropic diffusion, in Biomedical Optics 2005 (International Society for Optics and Photonics, 2005), pp. 380–385

    Google Scholar 

  37. P.M. Shankar, Speckle reduction in ultrasound B-scans using weighted averaging in spatial compounding. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 754–758 (1986)

    Article  Google Scholar 

  38. J.W. Goodman, Some fundamental properties of speckle*. J. Opt. Soc. Am. A 66, 1145–1150 (1976)

    Article  ADS  Google Scholar 

  39. M. Pircher, E. Go, R. Leitgeb, A.F. Fercher, C.K. Hitzenberger, Speckle reduction in optical coherence tomography by frequency compounding. J. Biomed. Opt. 8, 565–569 (2003)

    Article  ADS  Google Scholar 

  40. M.R. Avanaki, R. Cernat, P.J. Tadrous, T. Tatla, A.G. Podoleanu, S.A. HojjatoleslamI, Spatial compounding algorithm for speckle reduction of dynamic focus OCT images. IEEE Photonics Technol. Lett. 25, 1439–1442 (2013)

    Article  ADS  Google Scholar 

  41. A. Ozcan, A. Bilenca, A.E. DesjardinS, B.E. Bouma, G.J. Tearney, Speckle reduction in optical coherence tomography images using digital filtering. J. Opt. Soc. Am. A 24, 1901–1910 (2007)

    Article  ADS  Google Scholar 

  42. J. Rogowska, M.E. Brezinski, Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging. IEEE Trans. Med. Imaging 19, 1261–1266 (2000)

    Article  Google Scholar 

  43. P. Puvanathasan, K. Bizheva, Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set. Opt. Express 15, 15747–15758 (2007)

    Article  ADS  Google Scholar 

  44. B. Sander, M. Larsen, L. Thrane, J. Hougaard, T. Jørgensen, Enhanced optical coherence tomography imaging by multiple scan averaging. Br. J. Ophthalmol. 89, 207–212 (2005)

    Article  Google Scholar 

  45. G. Karasakal, I. Erer, Speckle noise reduction in SAR imaging using lattice filters based subband decomposition, in IEEE International Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007 (IEEE, 2007), pp. 1476–1480

    Google Scholar 

  46. J. Kim, D.T. Miller, E. Kim, S. Oh, J. Oh, T.E. Milner, Optical coherence tomography speckle reduction by a partially spatially coherent source. J. Biomed. Opt. 10, 064034-064034-9 (2005)

    Article  ADS  Google Scholar 

  47. M. Avanaki, P. Laissue, A.G. Podoleanu, A. Aber, S. Hojjatoleslami, Evaluation of wavelet mother functions for speckle noise suppression in OCT images. Int. J. Graph. Bioinf. Med. Eng. 11, 1–5 (2011)

    Google Scholar 

  48. M. Avanaki, P.P. Laissue, T.J. Eom, A.G. Podoleanu, A. Hojjatoleslami, Speckle reduction using an artificial neural network algorithm. Appl. Opt. 52, 5050–5057 (2013)

    Article  ADS  Google Scholar 

  49. M.R. Avanaki, P.P. Laissue, A.G. Podoleanu, A. Hojjat, Denoising based on noise parameter estimation in speckled OCT images using neural network, in 1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics (International Society for Optics and Photonics, 2008), 71390E-71390E-9

    Google Scholar 

  50. M.R. Avanaki, M.J. Marques, A. Bradu, A. Hojjatoleslami, A.G. Podoleanu, A new algorithm for speckle reduction of optical coherence tomography images, in SPIE BiOS (International Society for Optics and Photonics, 2014), 893437-893437-9

    Google Scholar 

  51. J.-N. Hwang, S.-R. LAY, A. Lippman, Nonparametric multivariate density estimation: a comparative study. IEEE Trans. Signal Process. 42, 2795–2810 (1994)

    Article  ADS  Google Scholar 

  52. H. Park, R. Miyazaki, T. Nishimura, Y. Tamaki, The speckle noise reduction and the boundary enhancement on medical ultrasound images using the cellular neural networks. . C, 127, 1726–1731 (2007)

    Article  ADS  Google Scholar 

  53. S. Adabi, S. Conforto, A. Clayton, A.G. Podoleanu, A. Hojjat, M. Avanaki, An intelligent speckle reduction algorithm for optical coherence tomography images, in Proceeding of the 4th International Conference on Photonics, Optics and Laser Technology, PHOTOPTICS 2016 (SciTePress, 2016), pp. 40–45

    Google Scholar 

  54. M. Bashkansky, J. Reintjes, Statistics and reduction of speckle in optical coherence tomography. Opt. Lett. 25, 545–547 (2000)

    Article  ADS  Google Scholar 

  55. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators. IEEE Trans. Neural Netw. 2, 359–366 (1989)

    Article  Google Scholar 

  56. M. Minsky, S. Papert, Perceptrons (1969)

    Google Scholar 

  57. T.B. Fitzpatrick, Soleil et peau. J Med. Esthet 2, 33–34 (1975)

    Google Scholar 

  58. M.R. Avanaki, A.G. Podoleanu, M.C. Price, S.A. Corr, S. Hojjatoleslami, Two applications of solid phantoms in performance assessment of optical coherence tomography systems. Appl. Opt. 52, 7054–7061 (2013)

    Article  ADS  Google Scholar 

  59. D. Harwood, M. Subbarao, H. Hakalahti, L.S. Davis, A new class of edge-preserving smoothing filters. Pattern Recogn. Lett. 6, 155–162 (1987)

    Article  Google Scholar 

  60. M. Kuwahara, K. Hachimura, S. Eiho, M. Kinoshita, Processing of RI-angiocardiographic images, in Digital Processing of Biomedical Images (Springer, 1976)

    Google Scholar 

  61. M. Nasiriavanaki, J. Xia, H. Wan, A.Q. Bauer, J.P. Culver, L.V. Wang, High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc. Natl. Acad. Sci. 111, 21–26 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Conforto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adabi, S., Clayton, A., Conforto, S., Hojjat, A., Podoleanu, A.G., Nasiriavanaki, M. (2018). Mitigation of Speckle Noise in Optical Coherence Tomograms. In: Ribeiro, P., Raposo, M. (eds) Optics, Photonics and Laser Technology. Springer Series in Optical Sciences, vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-98548-0_6

Download citation

Publish with us

Policies and ethics