Skip to main content

Photochromic Materials Towards Energy Harvesting

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 218))

Abstract

Solar to electrical energy conversion is one of the possible approaches regarding energy demand and sustainability. While traditional semiconductor photovoltaic units are seen to be well implemented in the market, with companies offering packs for both domestic and industries, the search for new materials and technologies aiming improvement in efficiency together with low cost issues has been continuously stressed over the past 20 years. This work point out a novel approach for energy conversion and storage devices, based on the so called photochromic electrets or photoelectrets, by using materials containing highly polarisable molecules as multifunctional diarylethenes (DTEs) and azobenzenes. This is supported by experimental results which show that (1) DTE-CN blends after electrical field induced orientation are able to induce external current response when submitted to visible light pulse (2) visible light is able to induce birefringence in layer-by-layer (LbL) films of poly{1-(4-(3-carboxy-4-hydroxy-phenylazo) benzenesulfonamido)-1,2-ethanediyl, sodium salt}(PAZO) and poly (allylamine hydrochloride) (PAH). These preliminary results allow to conclude that solar devices based on photoelectrets are worth to be further investigated towards energy harvesting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.A. Hill, M.C. Such, D. Chen, J. Gonzalez, W.M. Grady, Battery energy storage for enabling integration of distributed solar power generation. IEEE Trans. Smart Grid 3(2), 850–857 (2012)

    Article  Google Scholar 

  2. N.S. Lewis, Towards cost-effective solar energy use. Science 315(5813), 798–801 (2007)

    Article  ADS  Google Scholar 

  3. K. Wang, H. Wu, Y. Meng, Z. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1), 14–31 (2014)

    Article  Google Scholar 

  4. C. Hu, L. Song, Z. Zhang, N. Chen, Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy Environ. Sci. 8, 31–54 (2014)

    Article  Google Scholar 

  5. H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Advanced asymmetrical supercapacitors based on graphene hybrid materials. J. Nano Res. 4(8), 729–736 (2011)

    Article  Google Scholar 

  6. G.M. Sessler, (ed.), Electrets-Topics in Applied Physics, vol. 33 (Springer, Berlin Heidelberg, 1980, 1987). ISBN: 978-3-540-17335-9 (Print), 978-3-540-70750-9 (Online)

    Google Scholar 

  7. O. Heaviside, Electromagnetic induction and its propagation. Electrization and electrification. Natural electrets. Electrician 230–231 (1885)

    Google Scholar 

  8. G.M. Sessler, J.E. West, Self-biased condenser microphone with high capacitance. J. Acoust. Soc. Am. 34, 1787 (1962)

    Article  ADS  Google Scholar 

  9. M. Eguchi, On the permanent electret. Philos. Mag. 48, 178–192 (1925)

    Article  Google Scholar 

  10. E. Fukada, Piezoelectricity in polymers and biological materials. Ultrasonics 6, 229 (1968)

    Article  Google Scholar 

  11. M. Raposo, P.A. Ribeiro, J.N. Marat-Mendes, Interaction of corona discharge species with teflon-FEP (Fluoroethylenepropylene) foils. Ferroelectrics 134(1–4), 235–240 (1992)

    Article  Google Scholar 

  12. H. Kawai, The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8(7), 975 (1969)

    Article  ADS  Google Scholar 

  13. A.J. Lovinger, Ferroelectric polymers. Science 220(4602), 1115–1121 (1983)

    Article  ADS  Google Scholar 

  14. T. Furukawa, Ferroelectric properties of vinylidene fluoride copolymers. Phase Trans. 18, 143–211 (1989)

    Article  Google Scholar 

  15. J.A. Giacometti, P.A. Ribeiro, M. Raposo, J.N. Marat-Mendes, J.S.C. Campos, A.S. De Reggi, Study of poling behavior of biaxially stretched poly (vinylidene fluoride) films using the constant-current corona triode. J. Appl. Phys. 78(9), 5597–5603 (1995)

    Article  ADS  Google Scholar 

  16. F.I. Mopsik, M.G. Broadhurst, Molecular electrets. J. Appl. Phys. 46(10), 4204–4208 (1975)

    Article  ADS  Google Scholar 

  17. X. Zhang, G.M. Sessler, Y. Wang, Fluoroethylenepropylene ferroelectret films with cross-tunnel structure for piezoelectric transducers and micro energy harversters. J. Appl. Phys. 116(074109), 1–8 (2014)

    Google Scholar 

  18. X. Zhang, W. Liming, G.M. Sessler, Energy harvesting from vibration with cross-linked polypropylene piezoelectrets. AIP Adv. 5(077185), 1–10 (2015)

    Google Scholar 

  19. P. Podrom, S.G.M. Hillenbrand, J. Bos, T. Melz, Vibration-based energy harvesting with stacked piezoelectrets. Appl. Phys. Lett. 104(172901), 1–5 (2014)

    Google Scholar 

  20. X. Zhang, P. Podrom, L. Wu, G.M. Sessler, Vibration-based energy harvesting with piezoelectrets having high d31 activity. Appl. Phys. Lett. 108(193903), 1–4 (2016)

    Google Scholar 

  21. A. Cuadras, M. Gasulla, V. Ferrari, Thermal energy harvesting through pyroelectricity. Sens. Actuators A 158, 132–139 (2010)

    Article  Google Scholar 

  22. R. Castagna, M. Garbugli, A. Bianco, S. Perissinotto, G. Pariani, C. Bertarelli, G. Lanzani, Photochromic electret: a new tool for light energy harvesting. J. Phys. Chem. Lett. 3, 51–57 (2012)

    Article  Google Scholar 

  23. J.H. Kim, K.M. Hong, H.S. Na, Y.K. Han, Polymer thin films containing azo dye for rewritable media. Japanese J. Appl. Phys. 40, 1585–1587 (2001)

    Article  ADS  Google Scholar 

  24. A. Natanshon, P. Rochon, J. Gosselin, S. Xie, Azo polymers for reversible optical storage 1. Poly[4’-[[2-(acryloyloxy)ethy]ethylamino]4-nitroazobenzene]. Macromolecules 25, 2268–2273 (1992)

    Article  ADS  Google Scholar 

  25. X. Meng, A. Natansohn, P. Rochon, Azo polymers for reversible optical storage. 11 poly{4,4′-(1-methylethylidene) bisphenylene 3-[4-(4-nitrophenylazo)phenyl]-3-aza-pentanedioate}. J. Polym. Sci. Part B Polym. Phys. 34, 1461–1466 (1996)

    Article  ADS  Google Scholar 

  26. Z. Sekkat, J. Wood, W. Knoll, Reorientation mechanism of azobenzenes within the trans-cis photoisomerization. J. Phys. Chem. 99, 17226–17234 (1995)

    Article  Google Scholar 

  27. G.S. Hartley, The cis-form of azobenzene. Nature 140, 281 (1937)

    Article  ADS  Google Scholar 

  28. K.G. Yager, C.J Barret, Azobenzene polymers for photonic application. 1–35 (2009). Wiley

    Google Scholar 

  29. A. Monteiro, Estudo da dinâmica da criação e da relaxação de birrefrigência fotoinduzida em filmes automontados de PAH/PAZO, MSc thesis, Universidade Nova de Lisboa, Lisboa, Portugal (2013)

    Google Scholar 

  30. C. Cojocariu, P. Rochon, Light-induced motions in azobenzene containing polymers. Pure Appl. Chem. 76, 1479–1497 (2004)

    Article  Google Scholar 

  31. H. Rau, Photoisomerization of sterically hinderes azobenzes. J. Photochem. Photobiol. 42, 321–327 (1988)

    Article  Google Scholar 

  32. P. Farinha, S. Sério, P.A. Ribeiro, M. Raposo, Birefringence creation by solar light—a new approach to the development of solar cells with azobenzene materials, in Proceedings of the 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS 2016), pp. 367–370. ISBN: 978-989-758-174-8

    Google Scholar 

  33. O.N. Oliveira Jr., M. Raposo, A. Dhanabalan, Langmuir-Blodgett (LB) and self-assembled (SA) polymeric films, in Handbook of Surfaces and Interfaces of Materials, vol. 4, Chapter 1, ed. by H.S. Nalwa (Academic Press, New York), pp. 1–63

    Google Scholar 

  34. Q. Ferreira, P.J. Gomes, M. Raposo, J.A. Giacometti, O.N. Oliveira Jr., P.A. Ribeiro, Influence of ionic interactions on the photoinduced birefringence of poly [1-[4-(3-Carboxy-4 Hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] films. J. Nanosci. Nanotechnol. 7, 2659–2666 (2007)

    Article  Google Scholar 

  35. Q. Ferreira, P.J. Gomes, M.J.P. Maneira, P.A. Ribeiro, M. Raposo, Mechanisms of adsorption of an azo-polyelectrolyte onto layer-by-layer films. Sens. Actuators B 126, 311–317 (2007)

    Article  Google Scholar 

  36. Q. Ferreira, P.A. Ribeiro, O.N. Oliveira Jr., M. Raposo, Long-term stability at high temperatures for birefringence in PAZO/PAH layer-by-layer films. ACS Appl. Mater. Interfaces 4, 1470–1477 (2012)

    Article  Google Scholar 

  37. Q. Ferreira, P.J. Gomes, P.A. Ribeiro, N.C. Jones, S.V. Hoffmann, N.J. Mason, O.N. Oliveira Jr., M. Raposo, Determination of degree of ionization of poly (allylamine hydrochloride) (PAH) and poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) in layer-by-layer films using vacuum photoabsorption spectroscopy. Langmuir 29(1), 448–455 (2013)

    Article  Google Scholar 

  38. A.R. Monteiro-Timóteo, J.H.F. Ribeiro, P.A. Ribeiro, M. Raposo, Dynamics of creation photoinduced birefringence on (PAH/PAZO) n layer-by-layer films: analysis of consecutive cycles. Opt. Mater. 51, 18–23 (2016)

    Article  ADS  Google Scholar 

  39. J.A. Giacometti, J.S.C. Campos, Constant current corona triode with grid voltage control—application to polymer charging. Rev. Sci. Instrum. 61(3), 1143–1150 (1990)

    Article  ADS  Google Scholar 

  40. B. Gross, R. Hessel, Electron-emission from electron-irradiated dielectrics. IEEE Trans. Electr. Insul. 26(1), 18–25 (1991)

    Article  Google Scholar 

  41. R. Piron, E. Toussaere, D. Josse, S. Brasselet, J. Zyss, Towards non-linear photonics in all-optically poled polymer microcavities. Synth. Met. 115, 109–119 (2000)

    Article  Google Scholar 

  42. C. Madruga, P. Alliprandini, M.M. Andrade, M. Goncalves, M. Raposo, P.A. Ribeiro, Birefringence dynamics of poly{1-[4-(3-carboxy-4 hydroxyphenylazo) benzene-sulfonamido-1,2-ethanediyl, sodium salt} cast films. Thin Solid Films 519(22), 8191–8196 (2011)

    Article  ADS  Google Scholar 

  43. J.J. Ramsden, Y. Lvov, G. Decher, Determination of optical constants of molecular films assembled via alternate polyion adsorption. Thin Solid Films 254, 246–251 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from FEDER, through Programa Operacional Factores de Competitividade—COMPETE and Fundação para a Ciência e a Tecnologia—FCT, for the projects UID/FIS/00068/2013, POCTI/FAT/47529/2002 and PTDC/FIS-NAN/0909/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Raposo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magalhães-Mota, G., Farinha, P., Sério, S., Ribeiro, P.A., Raposo, M. (2018). Photochromic Materials Towards Energy Harvesting. In: Ribeiro, P., Raposo, M. (eds) Optics, Photonics and Laser Technology. Springer Series in Optical Sciences, vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-98548-0_11

Download citation

Publish with us

Policies and ethics