Skip to main content

Part of the book series: AAPS Introductions in the Pharmaceutical Sciences ((AAPSINSTR))

Abstract

Over the past four decades, recombinant proteins and peptides have gained an increasingly important place in pharmacotherapy, beginning with the introduction of recombinant insulin in 1982. With the advent of recombinant technology in manufacturing, the reliance on animal and human sources diminished, safety and supply of proteins and peptides increased, and costs decreased. This chapter will focus on the considerations specific to formulation, development, storage and delivery of those protein and peptide pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drug Bank Website. Open data drug and drug target database www.drugbankca. Accessed July 2012;30 SRC - BaiduScholar.

  2. Usmani SS, Bedi G, Samuel JS, et al. THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One. 2017;12(7):e0181748. https://doi.org/10.1371/journal.pone.0181748. [published Online First: Epub Date].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Middaugh CR, Siahann TJ. Pharmaceutical biotechnology. In: Sinko P, editor. Martin’s physical pharmacy and pharmaceutical sciences. 6th ed. Baltimore: Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  4. Branden C, Tooze J, York NY. The building blocks. In: Introduction to protein structure. New York: Garland Publishing, Inc; 1991.

    Google Scholar 

  5. Jorgensen L, Nielsen HM, Frokjaer S. Biotechnology-based pharmaceuticals. In: Florence AT, Siepmann J, editors. Modern pharmaceutics volume 2: applications and advances. 5th ed. New York: Informa Healthcare; 2009.

    Google Scholar 

  6. Manning MC, Chou DK, Murphy BM, et al. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.

    Article  Google Scholar 

  7. Pandit S, Cevher E, Zariwala MG, Somavarapu S, Alpar HO. Enhancement of immune response of HBsAg loaded poly (L-lactic acid) microspheres against hepatitis B through incorporation of alum and chitosan. J Microencapsul. 2007;24(6):539–52.

    Article  CAS  Google Scholar 

  8. Meinhold DW, Wright PE. Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion. Proc Natl Acad Sci U S A. 2011;108(22):9078–83.

    Article  CAS  Google Scholar 

  9. Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Develop Technol. 2007;12:505–23.

    Article  CAS  Google Scholar 

  10. Nagel K, Karash A. Biotechnology. In: Desai A, Lee M, editors. Gibaldi's drug delivery Systems in Pharmaceutical Care new American Society of Health Systems pharmacists. New York: American Society of Health System's Pharmacists; 2007.

    Google Scholar 

  11. Cromwell MEM, Hilario E, Jacobson F. Protein aggregation and bioprocessing. AAPS J. 2006;8(3):E572–E79.

    Article  CAS  Google Scholar 

  12. Mahler H-C, Friess W, Grauschopf U, et al. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci. 2009;98(9):2909–34.

    Article  CAS  Google Scholar 

  13. Crommelin DJA. Formulation of biotech products, including biopharmaceutical considerations. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.

    Google Scholar 

  14. Chang LL, Pikal MJ. Mechanism of protein stabilization in the solid state. J Pharm Sci. 2009; 98(9):2886–908.

    Article  CAS  Google Scholar 

  15. Ho RJY, Gibaldi M. Pharmacology, toxicology, therapeutic dosage formulations, and clinical response. In: Ho RJY, Gibaldi M, editors. Biotechnology and biopharmaceuticals transforming proteins and genes into drugs. Hoboken: Wiley-Liss; 2003.

    Chapter  Google Scholar 

  16. Washington N WCaWC. Cell membranes, epithelial barriers and drug absorption. In: Washington N WCaWC. Physiological pharmaceutics: barriers to drug absorption. 2nd ed. London: Taylor and Francis; 2001.

    Google Scholar 

  17. Schellekens H, Jiskoot W. Immunogenicity of therapeutic proteins. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.

    Google Scholar 

  18. Farrell RA, Marta M, Gaeguta AJ, Souslova V, Giovannoni G, Creeke PI. Development of resistance to biologic therapies with reference to IFN-β. Rheumatology. 2012;51(4):590–9.

    Article  CAS  Google Scholar 

  19. Schellekens H. Biosimilar therapeutic agents: issues with bioequivalence and immunogenicity. Eur J Clin Investig. 2004;34(12):797–9.

    Article  CAS  Google Scholar 

  20. McKoy JM, Stonecash RE, Cournoyer D, et al. Epoetin-associated pure red cell aplasia: past, present, and future considerations. Transfusion. 2008;48(8):1754–62.

    Article  Google Scholar 

  21. Bennett CL, Cournoyer D, Carson KR, et al. Long-term outcome of individuals with pure red cell aplasia and antierythropoietin antibodies in patients treated with recombinant epoetin: a follow-up report from the research on adverse drug events and reports (RADAR) project. Blood. 2005;106(10):3343–7.

    Article  CAS  Google Scholar 

  22. Medicine UNLo. Clinical trials website secondary clinical trials Website http://www.clinicaltrials.gov.

  23. Sola RJ, Griebenow K. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs. 2010;24(1):9–21. https://doi.org/10.2165/11530550-000000000-00000. [published Online First: Epub Date].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anand B, Deng R, Theil FP, et al. Monoclonal antibodies: from structure to therapeutic application. In: Crommelin DJA, SRaMB, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.

    Google Scholar 

  25. Sindelar RD, Crommelin DJA, Meibohm B, York NY. Genomics, other “omics” technologies, personalized medicine, and additional biotechnology-related techniques. In: Sindelar RD, Meibohm BE, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.

    Google Scholar 

  26. Foote M. Hematopoietic growth factors. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.

    Google Scholar 

  27. Ryff JC, Bordens RW, Pestka S. Interferons and interleukins. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.

    Google Scholar 

  28. Drug facts and comparisons secondary drug facts and comparisons 2018. http://www.lww.com/Product/9781574393705.

  29. Ahad MA, Alim MA, Ekram A. Interferon to PEG-interferon: a review. TAJ 2004;17(2 SRC - GoogleScholar):113–16.

    Google Scholar 

  30. Bhalla S. Parenteral drug delivery. In: Desai A, Lee M, editors. Gibaldis drug delivery systems in pharmaceutical care. New York: American Society of HealthSystems Pharmacists; 2007.

    Google Scholar 

  31. Jahn LG, Capurro JJ, Levy BL. Comparative dose accuracy of durable and patch insulin infusion pumps. J Diabetes Sci Technol. 2013;7(4):1011–20. https://doi.org/10.1177/193229681300700425. [published Online First: Epub Date].

    Article  PubMed  PubMed Central  Google Scholar 

  32. Millstein R, Becerra NM, Shubrook JH. Insulin pumps: Beyond basal-bolus. Cleve Clin J Med. 2015;82(12):835–42. https://doi.org/10.3949/ccjm.82a.14127. [published Online First: Epub Date].

    Article  PubMed  Google Scholar 

  33. Kapitza C, Fein S, Heinemann L, Schleusener D, Levesque S, Strange P. Basal-prandial insulin delivery in type 2 diabetes mellitus via the V-go: a novel continuous subcutaneous infusion device. J Diabetes Sci Technol. 2008;2(1):40–6.

    Article  Google Scholar 

  34. Zisser HC. The OmniPod insulin management system: the latest innovation in insulin pump therapy. Diabetes Ther. 2010;1(1):10–24.

    Article  CAS  Google Scholar 

  35. Beals JM. DMaKP. Insulin. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.

    Google Scholar 

  36. Crommelin D, Winden EV, Mekking A. Delivery of pharmaceutical proteins. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.

    Google Scholar 

  37. Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB.

    Google Scholar 

  38. Lazarus RA, Wagener JS. Recombinant human deoxyribonuclease I. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.

    Google Scholar 

  39. Ho RJY, Gibaldi M. Enzymes. In: Ho RJY, Gibaldi M, editors. Biotechnology and biopharmaceuticals: transforming proteins and genes into drugs. Hoboken: Wiley-Liss; 2003.

    Chapter  Google Scholar 

  40. Angelo R, Rousseau K, Grant M, Leone-Bay A, Richardson P. Technosphere insulin: defining the role of Technosphere particles at the cellular level. J Diabetes Sci Technol. 2009;1(3):545–54.

    Article  Google Scholar 

  41. P J. MannKind fights on with its diabetes game-changer Afrezza. 2012 June 12, 2012; 12 SRC - BaiduScholar. http://seekingalpha.com/article/704841-mannkind-fights-on-with-its-diabetes-game-changer-afrezza. Accessed 16 Aug 2012.

  42. Klonoff DC. Afrezza inhaled insulin: the fastest-acting FDA-approved insulin on the market has favorable properties. J Diabetes Sci Technol. 2014;8(6):1071–3. https://doi.org/10.1177/1932296814555820. [published Online First: Epub Date].

    Article  PubMed  PubMed Central  Google Scholar 

  43. Claxton A, Baker LD, Hanson A, et al. Long acting intranasal insulin Detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer's disease dementia. J Alzheimers Dis. 2015;45(4):1269–70. https://doi.org/10.3233/jad-159002. [published Online First: Epub Date].

    Article  PubMed  Google Scholar 

  44. Claxton A, Baker LD, Hanson A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer's disease dementia. J Alzheimers Dis. 2015;44(3):897–906. https://doi.org/10.3233/jad-141791. [published Online First: Epub Date].

    Article  CAS  PubMed  Google Scholar 

  45. Craft S, Claxton A, Baker LD, et al. Effects of regular and long-acting insulin on cognition and Alzheimer's disease biomarkers: a pilot clinical trial. J Alzheimers Dis. 2017;57(4):1325–34. https://doi.org/10.3233/jad-161256. [published Online First: Epub Date].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maimaiti S, Anderson KL, Demoll C, et al. Intranasal insulin improves age-related cognitive deficits and reverses electrophysiological correlates of brain aging. J Gerontol A Biol Sci Med Sci. 2016;71(1):30–9. https://doi.org/10.1093/gerona/glu314. [published Online First: Epub Date].

    Article  CAS  PubMed  Google Scholar 

  47. Heinemann L, Jacques Y. Oral insulin and buccal insulin: a critical reappraisal. J Diabetes Sci Technol. 2009;3(3):568–84.

    Article  Google Scholar 

  48. Palermo A, Napoli N, Manfrini S, Lauria A, Strollo R, Pozzilli P. Buccal spray insulin in subjects with impaired glucose tolerance: the prevoral study. Diabetes Obes Metab. 2011;13(1):42–6. https://doi.org/10.1111/j.1463-1326.2010.01312.x. [published Online First: Epub Date].

    Article  CAS  PubMed  Google Scholar 

  49. Review OP. Ocular hypertension - pipeline review, H1 2015.

    Google Scholar 

  50. Bernstein G. Delivery of insulin to the buccal mucosa utilizing the RapidMist™ system. Expert Opin Drug Deliv. 2008;5(9):1047–55.

    Article  CAS  Google Scholar 

  51. Biotechnology G. Generex biotechnology Website. Secondary generex biotechnology Website. http://generex.com/.

  52. Balfour JA, Noble S. Becaplermin. BioDrugs. 1999;11(5):359–64.

    Article  CAS  Google Scholar 

  53. Crowley P, Martini L. Drug-excipient interactions. Pharm Technol Eur. 2001;13(3):26–8.

    CAS  Google Scholar 

  54. Meyer BK, Ni A, Hu B, Shi L. Antimicrobial preservative use in parenteral products: past and present. J Pharm Sci. 2007;96(12):3155–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagel, K.M. (2018). Therapeutic Proteins. In: Introduction to Biologic and Biosimilar Product Development and Analysis. AAPS Introductions in the Pharmaceutical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-98428-5_2

Download citation

Publish with us

Policies and ethics