Skip to main content

A Large Neighboring Search Schema for Multi-agent Optimization

  • Conference paper
  • First Online:
Book cover Principles and Practice of Constraint Programming (CP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11008))

Abstract

The Distributed Constraint Optimization Problem (DCOP) is an elegant paradigm for modeling and solving multi-agent problems which are distributed in nature, and where agents cooperate to optimize a global objective within the confines of localized communication. Since solving DCOPs optimally is NP-hard, recent effort in the development of DCOP algorithms has focused on incomplete methods. Unfortunately, many of such proposals do not provide quality guarantees or provide a loose quality assessment. Thus, this paper proposes the Distributed Large Neighborhood Search (DLNS), a novel iterative local search framework to solve DCOPs, which provides guarantees on solution quality refining lower and upper bounds in an iterative process. Our experimental analysis of DCOP benchmarks on several important classes of graphs illustrates the effectiveness of DLNS in finding good solutions and tight upper bounds in both problems with and without hard constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An extended abstract of this work [6] appeared at AAMAS 2015.

  2. 2.

    However, it does not imply that the lower and upper bounds will converge to the same value.

  3. 3.

    We use DSA-B and set \(p=0.6\).

References

  1. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 3, 397–422 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bessiere, C., Gutierrez, P., Meseguer, P.: Including soft global constraints in DCOPs. In: Milano, M. (ed.) CP 2012. LNCS, pp. 175–190. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_15

    Chapter  Google Scholar 

  4. Campeotto, F., Dovier, A., Fioretto, F., Pontelli, E.: A GPU implementation of large neighborhood search for solving constraint optimization problems. In: Proceedings of the European Conference on Artificial Intelligence (ECAI), pp. 189–194 (2014)

    Google Scholar 

  5. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 639–646 (2008)

    Google Scholar 

  6. Fioretto, F., Campeotto, F., Dovier, A., Pontelli, E., Yeoh, W.: Large neighborhood search with quality guarantees for distributed constraint optimization problems. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1835–1836 (2015)

    Google Scholar 

  7. Fioretto, F., Le, T., Yeoh, W., Pontelli, E., Son, T.C.: Improving DPOP with branch consistency for solving distributed constraint optimization problems. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 307–323. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_24

    Chapter  Google Scholar 

  8. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems and applications: a survey. J. Artif. Intell. Res. 61, 623–698 (2018)

    Article  MathSciNet  Google Scholar 

  9. Fioretto, F., Pontelli, E., Yeoh, W., Dechter, R.: Accelerating exact and approximate inference for (distributed) discrete optimization with GPUs. Constraints 23(1), 1–43 (2018)

    Article  MathSciNet  Google Scholar 

  10. Fioretto, F., Yeoh, W., Pontelli, E.: A dynamic programming-based MCMC framework for solving DCOPs with GPUs. In: Proceedings of the International Conference on Principles and Practice of Constraint Programming (CP), pp. 813–831 (2016)

    Google Scholar 

  11. Fioretto, F., Yeoh, W., Pontelli, E.: Multi-variable agents decomposition for DCOPs. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 2480–2486 (2016)

    Google Scholar 

  12. Fioretto, F., Yeoh, W., Pontelli, E.: A multiagent system approach to scheduling devices in smart homes. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 981–989 (2017)

    Google Scholar 

  13. Fioretto, F., Yeoh, W., Pontelli, E., Ma, Y., Ranade, S.: A DCOP approach to the economic dispatch with demand response. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 999–1007 (2017)

    Google Scholar 

  14. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  Google Scholar 

  15. Godard, D., Laborie, P., Nuijten, W.: Randomized large neighborhood search for cumulative scheduling. In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), vol. 5, pp. 81–89 (2005)

    Google Scholar 

  16. Gutierrez, P., Lee, J.H.M., Lei, K.M., Mak, T.W.K., Meseguer, P.: Maintaining Soft Arc Consistencies in BnB-ADOPT\(^+\) during Search. In: Proceedings of the International Conference on Principles and Practice of Constraint Programming (CP), pp. 365–380 (2013)

    Google Scholar 

  17. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for approximate distributed constraint optimization with quality bounds. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 133–140 (2010)

    Google Scholar 

  18. Kluegel, W., Iqbal, M.A., Fioretto, F., Yeoh, W., Pontelli, E.: A realistic dataset for the smart home device scheduling problem for DCOPs. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10643, pp. 125–142. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71679-4_9

    Chapter  Google Scholar 

  19. Kumar, A., Faltings, B., Petcu, A.: Distributed constraint optimization with structured resource constraints. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 923–930 (2009)

    Google Scholar 

  20. Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: an open-source framework for distributed constraint optimization. In: International Workshop on Distributed Constraint Reasoning (DCR), pp. 160–164 (2009)

    Google Scholar 

  21. Maheswaran, R., Pearce, J., Tambe, M.: Distributed algorithms for DCOP: a graphical game-based approach. In: Proceedings of the Conference on Parallel and Distributed Computing Systems (PDCS), pp. 432–439 (2004)

    Google Scholar 

  22. Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., Varakantham, P.: Taking DCOP to the real world: efficient complete solutions for distributed event scheduling. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 310–317 (2004)

    Google Scholar 

  23. Miller, S., Ramchurn, S., Rogers, A.: Optimal decentralised dispatch of embedded generation in the smart grid. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 281–288 (2012)

    Google Scholar 

  24. Modi, P., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: asynchronous distributed constraint optimization with quality guarantees. Artif. Intell. 161(1–2), 149–180 (2005)

    Article  MathSciNet  Google Scholar 

  25. Nguyen, D.T., Yeoh, W., Lau, H.C.: Distributed Gibbs: a memory-bounded sampling-based DCOP algorithm. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 167–174 (2013)

    Google Scholar 

  26. Okimoto, T., Joe, Y., Iwasaki, A., Yokoo, M., Faltings, B.: Pseudo-tree-based incomplete algorithm for distributed constraint optimization with quality bounds. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 660–674. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_50

    Chapter  Google Scholar 

  27. Ottens, B., Dimitrakakis, C., Faltings, B.: DUCT: an upper confidence bound approach to distributed constraint optimization problems. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 528–534 (2012)

    Google Scholar 

  28. Pearce, J., Tambe, M.: Quality guarantees on k-optimal solutions for distributed constraint optimization problems. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1446–1451 (2007)

    Google Scholar 

  29. Petcu, A., Faltings, B.: Approximations in distributed optimization. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 802–806. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_68

    Chapter  Google Scholar 

  30. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1413–1420 (2005)

    Google Scholar 

  31. Petcu, A., Faltings, B.: A hybrid of inference and local search for distributed combinatorial optimization. In: Proceedings of the International Conference on Intelligent Agent Technology (IAT), pp. 342–348 (2007)

    Google Scholar 

  32. Rogers, A., Farinelli, A., Stranders, R., Jennings, N.: Bounded approximate decentralised coordination via the max-sum algorithm. Artif. Intell. 175(2), 730–759 (2011)

    Article  MathSciNet  Google Scholar 

  33. Rollon, E., Larrosa, J.: Improved bounded max-sum for distributed constraint optimization. In: Milano, M. (ed.) CP 2012. LNCS, pp. 624–632. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_45

    Chapter  Google Scholar 

  34. Rust, P., Picard, G., Ramparany, F.: Using message-passing dcop algorithms to solve energy-efficient smart environment configuration problems. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 468–474 (2016)

    Google Scholar 

  35. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30

    Chapter  Google Scholar 

  36. Sultanik, E., Modi, P.J., Regli, W.C.: On modeling multiagent task scheduling as a distributed constraint optimization problem. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1531–1536 (2007)

    Google Scholar 

  37. Ueda, S., Iwasaki, A., Yokoo, M.: Coalition structure generation based on distributed constraint optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 197–203 (2010)

    Google Scholar 

  38. Vinyals, M., et al.: Quality guarantees for region optimal DCOP algorithms. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 133–140 (2011)

    Google Scholar 

  39. Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm. J. Artif. Intell. Res. 38, 85–133 (2010)

    Article  Google Scholar 

  40. Yeoh, W., Sun, X., Koenig, S.: Trading off solution quality for faster computation in DCOP search algorithms. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 354–360 (2009)

    Google Scholar 

  41. Yeoh, W., Yokoo, M.: Distributed problem solving. AI Mag. 33(3), 53–65 (2012)

    Article  Google Scholar 

  42. Zhang, W., Wang, G., Xing, Z., Wittenberg, L.: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks. Artif. Intell. 161(1–2), 55–87 (2005)

    Article  MathSciNet  Google Scholar 

  43. Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., Sycara, K.: Distributed constraint optimization for teams of mobile sensing agents. J. Auton. Agents Multi Agent Syst. 29(3), 495–536 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The research at the Washington University in St. Louis was supported by the National Science Foundation (NSF) under grant numbers 1550662 and 1540168. The research at New Mexico State University was supported by the NSF under grant numbers 1458595 and 1345232. The views and conclusions contained in this document are those of the authors only.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Fioretto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoang, K.D., Fioretto, F., Yeoh, W., Pontelli, E., Zivan, R. (2018). A Large Neighboring Search Schema for Multi-agent Optimization. In: Hooker, J. (eds) Principles and Practice of Constraint Programming. CP 2018. Lecture Notes in Computer Science(), vol 11008. Springer, Cham. https://doi.org/10.1007/978-3-319-98334-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98334-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98333-2

  • Online ISBN: 978-3-319-98334-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics