Skip to main content

An Incremental SAT-Based Approach to Reason Efficiently on Qualitative Constraint Networks

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11008))

Abstract

The \({\mathcal {RCC}}8 \) language is a widely-studied formalism for describing topological arrangements of spatial regions. Two fundamental reasoning problems that are associated with \({\mathcal {RCC}}8 \) are the problems of satisfiability and realization. Given a qualitative constraint network (QCN) of \({\mathcal {RCC}}8 \), the satisfiability problem is deciding whether it is possible to assign regions to the spatial variables of the QCN in such a way that all of its constraints are satisfied (solution). The realization problem is producing an actual spatial model that can serve as a solution. Researchers in \({\mathcal {RCC}}8 \) focus either on symbolically checking the satisfiability of a QCN or on presenting a method to realize (valuate) a satisfiable QCN. To the best of our knowledge, a combination of those two lines of research has not been considered in the literature in a unified and homogeneous approach, as the first line deals with native constraint-based methods, and the second one with rich mathematical structures that are difficult to implement. In this article, we combine the two aforementioned lines of research and explore the opportunities that surface by interrelating the corresponding reasoning problems, viz., the problems of satisfiability and realization. We restrict ourselves to QCNs that, when satisfiable, are realizable with rectangles. In particular, we propose an incremental \(\mathrm {SAT}\)-based approach for providing a framework that reasons about the \({\mathcal {RCC}}8 \) language in a counterexample-guided manner. The incrementality of our approach also avoids the usual blow-up and the lack of scalability in \(\mathrm {SAT}\)-based encodings. Specifically, our \(\mathrm {SAT}\)-translation is parsimonious, i.e, constraints are added incrementally in a manner that guides the embedded \(\mathrm {SAT}\)-solver and forbids it to find the same counter-example twice. We experimentally evaluated our approach and studied its scalability against state-of-the-art solvers for reasoning about \({\mathcal {RCC}}8 \) relations using a varied dataset of instances. The approach scales up and is competitive with the state of the art for the considered benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathring{A}\) denotes the interior of A.

  2. 2.

    The name comes from the historical figure who used to also do a lot of \({\text {CEGAR}}\).

  3. 3.

    The generator comes with the \(\mathrm {Renz}\text {-}\mathrm {Nebel01} \) solver.

References

  1. Sioutis, M., Alirezaie, M., Renoux, J., Loutfi, A.: Towards a synergy of qualitative spatio-temporal reasoning and smart environments for assisting the elderly at home. In: IJCAI Workshop on Qualitative Reasoning (2017)

    Google Scholar 

  2. Bhatt, M., Guesgen, H., Wölfl, S., Hazarika, S.: Qualitative spatial and temporal reasoning: emerging applications, trends, and directions. Spat. Cogn. Comput. 11, 1–14 (2011)

    Article  Google Scholar 

  3. Dubba, K.S.R., Cohn, A.G., Hogg, D.C., Bhatt, M., Dylla, F.: Learning relational event models from video. J. Artif. Intell. Res. 53, 41–90 (2015)

    Article  MathSciNet  Google Scholar 

  4. Story, P.A., Worboys, M.F.: A design support environment for spatio-temporal database applications. In: Frank, A.U., Kuhn, W. (eds.) COSIT 1995. LNCS, vol. 988, pp. 413–430. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60392-1_27

    Chapter  Google Scholar 

  5. Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: KR (1992)

    Google Scholar 

  6. Bouzy, B.: Les concepts spatiaux dans la programmation du go. Revue d’Intelligence Artificielle 15, 143–172 (2001)

    Article  Google Scholar 

  7. Lattner, A.D., Timm, I.J., Lorenz, M., Herzog, O.: Knowledge-based risk assessment for intelligent vehicles. In: KIMAS (2005)

    Google Scholar 

  8. Heintz, F., de Leng, D.: Spatio-temporal stream reasoning with incomplete spatial information. In: ECAI (2014)

    Google Scholar 

  9. Randell, D.A., Galton, A., Fouad, S., Mehanna, H., Landini, G.: Mereotopological correction of segmentation errors in histological imaging. J. Imaging 3(4), 63 (2017)

    Article  Google Scholar 

  10. Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: a maximal tractable fragment of the region connection calculus. Artif. Intell. 108(1–2), 69–123 (1999)

    Article  MathSciNet  Google Scholar 

  11. Li, S.: On topological consistency and realization. Constraints 11, 31–51 (2006)

    Article  MathSciNet  Google Scholar 

  12. Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 161–215. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_4

    Chapter  Google Scholar 

  13. Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time: a graph-theoretic approach. J. ACM 40, 1108–1133 (1993)

    Article  MathSciNet  Google Scholar 

  14. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

    Article  MathSciNet  Google Scholar 

  15. Huang, J., Li, J.J., Renz, J.: Decomposition and tractability in qualitative spatial and temporal reasoning. Artif. Intell. 195, 140–164 (2013)

    Article  MathSciNet  Google Scholar 

  16. Brummayer, R., Biere, A.: Effective bit-width and under-approximation. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 304–311. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04772-5_40

    Chapter  Google Scholar 

  17. Seipp, J., Helmert, M.: Counterexample-guided cartesian abstraction refinement. In: Borrajo, D., et al. (eds.) Proceedings of ICAPS 2013. AAAI (2013)

    Google Scholar 

  18. Soh, T., Le Berre, D., Roussel, S., Banbara, M., Tamura, N.: Incremental SAT-based method with native boolean cardinality handling for the hamiltonian cycle problem. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 684–693. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_52

    Chapter  Google Scholar 

  19. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–24 (2016)

    Article  MathSciNet  Google Scholar 

  20. Pulina, L.: The ninth QBF solvers evaluation - preliminary report. In: Lonsing, F., Seidl, M. (eds.) Proceedings of QBF@SAT 2016, CEUR Workshop Proceedings, vol. 1719. CEUR-WS.org (2016)

    Google Scholar 

  21. Hooker, J.N.: Logic-based methods for optimization. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 336–349. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58601-6_111

    Chapter  Google Scholar 

  22. Chu, Y., Xia, Q.: A hybrid algorithm for a class of resource constrained scheduling problems. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 110–124. Springer, Heidelberg (2005). https://doi.org/10.1007/11493853_10

    Chapter  Google Scholar 

  23. Hooker, J.N.: A hybrid method for the planning and scheduling. Constraints 10(4), 385–401 (2005)

    Article  MathSciNet  Google Scholar 

  24. Tran, T.T., Beck, J.C.: Logic-based benders decomposition for alternative resource scheduling with sequence dependent setups. In: Proceedings of ECAI 2012 (2012)

    Google Scholar 

  25. de Moura, L., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model checking over infinite domains. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 438–455. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45620-1_35

    Chapter  Google Scholar 

  26. Ji, X., Ma, F.: An efficient lazy SMT solver for nonlinear numerical constraints. In: Proceedings of WETICE 2012 (2012)

    Google Scholar 

  27. Renz, J.: A canonical model of the region connection calculus. JANCL 12, 469–494 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Renz, J., Ligozat, G.: Weak composition for qualitative spatial and temporal reasoning. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 534–548. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_40

    Chapter  MATH  Google Scholar 

  29. Li, S., Ying, M.: Region connection calculus: its models and composition table. Artif. Intell. 145, 121–146 (2003)

    Article  MathSciNet  Google Scholar 

  30. Long, Z., Schockaert, S., Li, S.: Encoding large RCC8 scenarios using rectangular pseudo-solutions. In: Proceedings of KR 2016 (2016)

    Google Scholar 

  31. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning, pp. 466–483. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1_28

    Chapter  Google Scholar 

  32. Lagniez, J.M., Le Berre, D., de Lima, T., Montmirail, V.: A recursive shortcut for CEGAR: application to the modal logic K satisfiability problem. In: Proceedings of IJCAI 2017 (2017)

    Google Scholar 

  33. Long, Z.: Qualitative spatial and temporal representation and reasoning: efficiency in time and space. Ph.D. thesis, Faculty of Engineering and Information Technology, University of Technology Sydney (UTS), January 2017

    Google Scholar 

  34. Savicky, P., Vomlel, J.: Triangulation heuristics for BN2O networks. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS (LNAI), vol. 5590, pp. 566–577. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02906-6_49

    Chapter  Google Scholar 

  35. Sioutis, M., Koubarakis, M.: Consistency of chordal RCC-8 networks. In: Proceedings of ICTAI 2012. IEEE Computer Society (2012)

    Google Scholar 

  36. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1–3), 61–95 (1991)

    Article  MathSciNet  Google Scholar 

  37. Long, Z., Sioutis, M., Li, S.: Efficient path consistency algorithm for large qualitative constraint networks. In: Proceedings of IJCAI 2016 (2016)

    Google Scholar 

  38. Sioutis, M., Long, Z., Li, S.: Leveraging variable elimination for efficiently reasoning about qualitative constraints. Int. J. Artif. Intell. Tools (2018, in press)

    Google Scholar 

  39. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_23

    Chapter  MATH  Google Scholar 

  40. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  41. Westphal, M., Wölfl, S., Gantner, Z.: GQR: a fast solver for binary qualitative constraint networks. In: Proceedings of the AAAI Spring Symposium. AAAI (2009)

    Google Scholar 

  42. Renz, J., Nebel, B.: Efficient methods for qualitative spatial reasoning. J. Artif. Intell. Res. 15, 289–318 (2001)

    Article  MathSciNet  Google Scholar 

  43. Sioutis, M., Condotta, J.-F.: Tackling large qualitative spatial networks of scale-free-like structure. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS (LNAI), vol. 8445, pp. 178–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07064-3_15

    Chapter  Google Scholar 

  44. Sioutis, M., Condotta, J., Koubarakis, M.: An efficient approach for tackling large real world qualitative spatial networks. Int. J. Artif. Intell. Tools 25, 1–33 (2016)

    Article  Google Scholar 

  45. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their insightful comments. Part of this work was supported by the French Ministry for Higher Education and Research, the Haut-de-France Regional Council through the “Contrat de Plan État Région (CPER) DATA” and an EC FEDER grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gael Glorian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glorian, G., Lagniez, JM., Montmirail, V., Sioutis, M. (2018). An Incremental SAT-Based Approach to Reason Efficiently on Qualitative Constraint Networks. In: Hooker, J. (eds) Principles and Practice of Constraint Programming. CP 2018. Lecture Notes in Computer Science(), vol 11008. Springer, Cham. https://doi.org/10.1007/978-3-319-98334-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98334-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98333-2

  • Online ISBN: 978-3-319-98334-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics