Skip to main content

Respiration and the Effects of Pressure

  • Chapter
  • First Online:
Marine Mammals
  • 1919 Accesses

Abstract

Respiration refers to gas exchange between an animal and the environment. Except for sea otters, which have unusually large lungs, the lung volumes of marine and terrestrial mammals scale isometrically with body mass. Compared with terrestrial mammals, marine mammals have a larger tidal volume (relative to total lung volume), exhibit high tidal flows (especially in small Odontoceti), and breathe apneustically in which there are periods of apnea. When averaged over periods of eupnea and apnea, marine mammals have a resting respiratory rate that is much less than predicted for but an average tidal volume that is threefold larger than predicted. Barotrauma is physical damage to tissues caused by a difference in pressure between gas in the respiratory system and the surrounding fluid or tissue, and this can be avoided if the pressure equalizes. Marine mammals have a very compliant thorax that enables their lungs (primarily the alveoli) to collapse under pressure. To prevent a high partial pressures of nitrogen in blood and tissues resulting in decompression sickness and nitrogen narcosis, reinforcement of the terminal airways in the lungs of pinnipeds and Cetacea allows the alveoli to collapse eventually isolating residual gas in the non-gas-exchanging airways. There is no clear effect of pressure on enzyme and membrane structure and function in marine mammals, but how they tolerate high pressures remains unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartholomew GA (1954) Body temperature and respiratory and heart rates in the northern elephant seal. J Mammal 35:211–218

    Article  Google Scholar 

  • Bélanger LF (1940) A study of the histological structure of the respiratory portion of the lungs of aquatic mammals. Am J Anat 67:437–469

    Article  Google Scholar 

  • Bergey M, Baier H (1987) Lung mechanical properties in the West Indian manatee (Trichechus manatus). Respir Physiol 68:63–7 5

    Article  CAS  PubMed  Google Scholar 

  • Berghage TE, Durman D (1980) U.S. Navy air decompression schedule risk analysis. Naval Medical Research Institute, Bethesda, p 22

    Google Scholar 

  • Berghage TE, David TD, Dyson CV (1979) Species differences in decompression. Undersea Biomed Res 6:1–13

    CAS  PubMed  Google Scholar 

  • Blix AS, Walløe L, Messelt EB (2013) On how whales avoid decompression sickness and why they sometimes strand. J Exp Biol 216:3385–3387

    Article  PubMed  Google Scholar 

  • Bostrom BL, Fahlman A, Jones DR (2008) Tracheal compression delays alveolar collapse during deep diving in marine mammals. Respir Physiol Neurobiol 161:298–305

    Article  PubMed  Google Scholar 

  • Castellini MA, Castellini JM, Rivera PM (2001) Adaptations to pressure in the RBC metabolism of diving mammals. Comp Biochem Physiol A Mol Integr Physiol 129:751–757

    Article  CAS  PubMed  Google Scholar 

  • Castellini MA, Rivera PM, Castellini JM (2002) Biochemical aspects of pressure tolerance in marine mammals. Comp Biochem Physiol A Mol Integr Physiol 133:893–899

    Article  PubMed  Google Scholar 

  • Chapla ME, Nowacek DP, Rommel SA, Sadler VM (2007) CT scans and 3D reconstructions of Florida manatee (Trichechus manatus latirostris) heads and ear bones. Hear Res 228:123–135

    Article  PubMed  Google Scholar 

  • Converse LJ, Fernandes PJ, MacWilliams PS, Bossart GD (1994) Hematology, serum chemistry, and morphometric reference values for Antillean manatees (Trichechus manatus manatus). J Zoo Wildl Med 25:423–431

    Google Scholar 

  • Cotton PB, Piscitelli MA, McLellan WA, Rommel SA, Dearolf JL, Pabst DA (2008) The gross morphology and histochemistry of respiratory muscles in bottlenose dolphins, Tursiops truncatus. J Morphol 269:1520–1538

    Article  Google Scholar 

  • Cousteau JY, Dumas F (1953) Rapture of the deep. In: The silent world. Harper and Row, Pub, New York, pp 21–33

    Google Scholar 

  • Craig AB (1968) Depth limits of breath hold diving (an example of fennology). Respir Physiol 5:14–22

    Article  PubMed  Google Scholar 

  • Croll DA, Nishiguchi MK, Kaupp S (1992) Pressure and lactate dehydrogenase function in diving mammals and birds. Physiol Zool 65:1022–1027

    Article  CAS  Google Scholar 

  • Crosfill ML, Widdicombe JG (1961) Physical characteristics of the chest and lungs and the work of breathing in different mammalian species. J Physiol 158:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross ER (1962) Taravana. Skin Diver Magazine 11:42–45 as reported in Paulev 1965

    Google Scholar 

  • Davis RW (2014) A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. Journal of Comparative Physiology B 184:23–53

    Article  Google Scholar 

  • Davis RW, Jaquet N, Gendron D, Bazzino G, Markaida U, Gilly W (2007) Diving behavior of sperm whales in relation to the behavior of their main prey, jumbo squid in the Gulf of California, Mexico. Mar Ecol Prog Ser 333:291–302

    Article  Google Scholar 

  • Davis RW, Kanatous SB (1999) Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives. J Exp Biol 202:1091–1113

    CAS  PubMed  Google Scholar 

  • Davis RW, Williams TM (2012) The dive response is exercise modulated to maximize aerobic dive duration. J Comp Physiol A 198:583–591

    Article  Google Scholar 

  • Dempsey JA, Hanson PG, Henderson KS (1984) Exercise-induced hypoxaemia in healthy human subjects at sea level. J Physiol 355:161–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denison DM, Kooyman GL (1973) The structure and function of the small airways in pinniped and sea otter lungs. Respir Physiol 17:1–10

    Article  CAS  PubMed  Google Scholar 

  • Denison DM, Warrell DA, West JB (1971) Airway structure and alveolar emptying in the lungs of sea lions and dogs. Respir Physiol 13:253–260

    Article  CAS  PubMed  Google Scholar 

  • Dennison S, Moore MJ, Fahlman A, Moore K, Sharp S, Harry CT, Hoppe J, Niemeyer M, Lentell B, Wells RS (2011) Bubbles in live-stranded dolphins. Proc R Soc B. https://doi.org/10.1098/rspb

  • Dhindsa DS, Metcalfe J, Hoversland AS, Hartman RA (1974) Comparative studies of the respiratory functions of mammalian blood X. Killer whale (Orcinus orca linnaeus) and beluga whale (Delphinapterus leucas). Respir Physiol 20:93–103

    Article  CAS  PubMed  Google Scholar 

  • Eckenhoff RG, Olstad CS, Carrod G (1990) Human dose-response relationship for decompression and endogenous bubble formation. J Appl Physiol 69:914–918

    Article  CAS  PubMed  Google Scholar 

  • Elsner R, Shurley JT, Hammond DD, Brooks RE (1970) Cerebral tolerance to hypoxemia in asphyxiated Weddell seals. Respir Physiol 9:287–297

    Article  CAS  PubMed  Google Scholar 

  • Fahlman A, Hooker SK, Olszowkac A, Bostromd BL Jones DR (2009) Estimating the effect of lung collapse and pulmonary shunt on gas exchange during breath-hold diving: the Scholander and Kooyman legacy. Respir Physiol Neurobiol 165:28–39

    Article  CAS  PubMed  Google Scholar 

  • Fahlman A, Tyack PL, Miller PJO, Kvadsheim PH (2014) How man-made interference might cause gas bubble emboli in deep diving whales. Front Physiol 5:1–6

    Google Scholar 

  • Fahlman A, Loring SH, Levine G, Rocho-Levine J, Austin T, Brodsky M (2015) Lung mechanics and pulmonary function testing in cetaceans. J Exp Biol 218(670):2030–2038

    Article  PubMed  Google Scholar 

  • Falke KJ, Hill RD, Qvist J, Schneider RC, Guppy M, Liggins GC, Hochachka PW, Elliott RE, Zapol WM (1985) Seal lungs collapse during free diving: evidence from arterial nitrogen tensions. Science 229:556–558

    Article  CAS  PubMed  Google Scholar 

  • Fanning JC, Harrison RJ (1974) The structure of the trachea and lungs of the South Australian bottle-nosed dolphin. In: Harrison RJ (ed) Functional anatomy of marine mammals, vol 2. Academic Press, London, pp 231–252

    Google Scholar 

  • Fernandez A, Edwards JF, Rodriguez F, Espinosa de los Monteros A, Herraez P, Castro P, Jaber JR, Martin V, Arbelo M (2005) ‘Gas and fat embolic syndrome’ involving a mass stranding of beaked whales (family Ziphiidae) exposed to anthropogenic sonar signals. Vet Pathol 42:446–457

    Article  CAS  PubMed  Google Scholar 

  • Ferrigno M, Lundgren CEG (1999) Human breath-hold diving. In: Lundgren CEG, Miller JN (eds) The lung at depth. Marcel Dekker, Inc, New York, pp 529–577

    Google Scholar 

  • Fitz-Clarke JR (2007) Mechanics of airway and alveolar collapse in human breath-hold diving. Respir Physiol Neurobiol 159:202–210

    Article  PubMed  Google Scholar 

  • Fitz-Clarke JR (2009) Risk of decompression sickness in extreme human breath-hold diving. Undersea Hyperb Med 36:83–91

    CAS  PubMed  Google Scholar 

  • Foot NJ, Orgeig S, Daniels CB (2006) The evolution of a physiological system: the pulmonary surfactant system in diving mammals. Respir Physiol Neurobiol 154:118–138

    Article  CAS  PubMed  Google Scholar 

  • Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32:121–140

    Article  CAS  PubMed  Google Scholar 

  • Gehr P, Mwangi DK, Ammann A, Maloiy GMO, Taylor CR, Weibel ER (1981) Design of the mammmalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to total body mass: wild and domestic mammals. Respir Physiol 44:61–86

    Article  CAS  PubMed  Google Scholar 

  • Gibbs A, Somero GN (1990) Pressure adaptation of teleost gill Na+ /K+ −adenosine triphosphatase: role of the lipid and protein moieties. J Comp Physiol B 160:431–439

    Article  CAS  Google Scholar 

  • Goudappel JR, Slijper EJ (1958) Microscopic structure of the lungs of the bottlenose whale. Nature 4633:479

    Article  Google Scholar 

  • Graham RT, Roberts CM, Smart JCR (2006) Diving behaviour of whale sharks in relation to a predictable food pulse. J R Soc Interface 3:109–116

    Article  PubMed  Google Scholar 

  • Green AA, Redfield AC (1933) On the respiratory function of the blood of the porpoise. Biol Bull 64:44–52

    Article  Google Scholar 

  • Gross M, Jaenicke R (1994) Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem 221:617–630

    Article  CAS  PubMed  Google Scholar 

  • Hall JE (2016) Guyton and Hall textbook of medical physiology, 13th edn. Elesvier, Philadelphia, PA, Inc., 1, pp 145

    Google Scholar 

  • Halsey MJ (1982) Effects of high pressure on the central nervous system. Physiol Rev 62:1341–1377

    Article  CAS  PubMed  Google Scholar 

  • Harvey EN, McElroy WD, Whiteley AH, Warren GH, Pease DC (1944) Bubble formation in animals. III. An analysis of gas tension and hydrostatic pressure in cats. J Cell Comp Physiol 24:117–132

    Article  CAS  Google Scholar 

  • Henk WG, Haldman JT (1990) Microanatomy of the lung of the bowhead whale Balaena mysticetus. Anat Rec 226:187–197

    Article  CAS  PubMed  Google Scholar 

  • Hooker SK, Baird RW (1999) Deep-diving behaviour of the northern bottlenose whale, Hyperoodon ampullatus (Cetacea: Ziphiidae). Proc R Soc Lond B: Biol Sci 266:671–676

    Article  Google Scholar 

  • Hooker SK, Baird RW, Fahlman A (2009) Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus. Respir Physiol Neurobiol 167:235–246

    Article  PubMed  Google Scholar 

  • Hooker SK, Fahlman A, Moore MJ, Aguilar de Soto N, Bernaldo de Quiros Y, Brubakk AO, Costa DP, Costidis AM. Dennison S, Falke KJ, Fernandez A, Ferrigno M, Fitz-Clarke JR, Garner MM, Houser DS, Jepson PD, Ketten RD, Kvadsheim PH, Madsen PT, Pollock NW, Rotstein DS, Rowles TK, Simmons SE, Van Bonn W, Weathersby PK, Weise MJ, Williams TM, Tyack PL (2011) Deadly diving? Physiological and behavioural management of decompression stress in diving mammals. Proc R Soc B. https://doi.org/10.1098/rspb

  • Hooker SK, Miller PJO, Johnson M, Cox OP, Boyd I (2005) Ascent exhalations of Antarctic fur seals: a behavioural adaptation for breath-hold diving? Proc R Soc Lond B 272:355–363

    Article  Google Scholar 

  • Houser DS, Howard R, Ridgway S (2001) Can diving-induced tissue nitrogen supersaturation increase the chance of acoustically driven bubble growth in marine mammals? J Theor Biol 213:183–195

    Article  CAS  PubMed  Google Scholar 

  • Houser DS, Dankiewicz-Talmadge LA, Stockard TK, Ponganis PJ (2010) Investigation of the potential for vascular bubble formation in a repetitively diving dolphin. J Exp Biol 213:52–62

    Article  CAS  PubMed  Google Scholar 

  • Hui CA (1975) Thoracic collapse as affected by the retia thoracica in the dolphin. Respir Physiol 25:63–70

    Article  CAS  PubMed  Google Scholar 

  • Hunter WL, Bennett PB (1974) The causes, mechanisms and prevention of high pressure nervous syndrome. Undersea Biomed Res 1:1–28

    Google Scholar 

  • Irving L (1935) The protection of whales from the danger of caisson disease. Science 81:560–561

    Article  CAS  PubMed  Google Scholar 

  • Irving L, Scholander PF, Grinnell SW (1941) The respiration of the porpoise, Tursiops truncatus. J Cell Comp Physiol 17:145–168

    Article  CAS  Google Scholar 

  • Jepson PD, Arbelo M, Deaville R, Patterson IAP, Castro P, Baker JR, Degollada E, Ross HM, Herráez P, Pocknell AM, Rodríguez F, Howie FE, Espinosa A, Reid RJ, Jaber JR, Martin V, Cunningham AA, Fernández A (2003) Gas-bubble lesions in stranded cetaceans. Nature 425:575–576

    Article  CAS  PubMed  Google Scholar 

  • Karandeeva OG, Matisheva SK, Shapunova VM (1973) Features of external respiration in the Delphinidae. In: Chapskii KK, Sokolov VE (eds) Morphology and ecology of marine mammals: seals, dolphins, porpoises. Wiley, New York, pp 196–206

    Google Scholar 

  • Kiessling RL, Maag CH (1962) Performance impairment as a function of nitrogen narcosis. J Appl Psychol 46:91–95

    Article  Google Scholar 

  • Klatsky LJ, Wells RS, Sweeney JC (2007) Offshore bottlenose dolphins (Tursiops truncatus) movement and dive behavior near the Bermuda Pedestal. J Mammal 88:59–66

    Article  Google Scholar 

  • Kohshi K, Wong RM, Abe H, Katoh T, Okudera T, Mano Y (2005) Neurological manifestations in Japanese Ama divers. Undersea Hyperb Med 32:11–20

    CAS  PubMed  Google Scholar 

  • Kooyman GL (1972) Deep diving behaviour and effects of pressure in reptiles, birds, and mammals. In: Sleigh MA, MacDonald AG (eds) The effects of pressure on organisms, Symp Soc Exp Biol No. 26. Cambridge University Press, London, pp 295–312

    Google Scholar 

  • Kooyman GL (1973) Respiratory adaptions in marine mammals. Integr Comp Biol 13:457–468

    Google Scholar 

  • Kooyman GL (1988) Pressure and the diver. Can J Zool 66:84–88

    Article  Google Scholar 

  • Kooyman GL (1989) Diverse divers: physiology and behavior. Springer, Berlin, p 200

    Book  Google Scholar 

  • Kooyman GL, Andersen HT (1969) Deep diving. In: Andersen HT (ed) The biology of marine mammals. Academic Press, New York, pp 65–94

    Google Scholar 

  • Kooyman GL, Cornell LH (1981) Flow properties of expiration and inspiration in a trained bottle-nosed porpoise. Physiol Zool 54:55–61

    Article  Google Scholar 

  • Kooyman GL, Hammond DD, Schroeder JP (1970) Bronchograms and tracheograms of seals under pressure. Science 169:82–84

    Article  CAS  PubMed  Google Scholar 

  • Kooyman GL, Kerem DH, Campbell WB, Wright JJ (1971) Pulmonary function in freely diving Weddell seals, Leptonychotes weddelli. Respir Physiol 12:271–282

    Article  CAS  PubMed  Google Scholar 

  • Kooyman GL, Kerem DH, Campbell WB, Wright JJ (1973) Pulmonary gas exchange in freely diving Weddell seals, Leptonychotes weddelli. Respir Physiol 17:283–290

    Article  CAS  PubMed  Google Scholar 

  • Kooyman GL, Schroeder JP, Denison DM, Hammond DD, Wright JJ, Bergman WP (1972) Blood nitrogen tensions of seals during simulated deep dives. Am J Phys 223:1016–1020

    Article  CAS  Google Scholar 

  • Kooyman GL, Sinnett EE (1979) Mechanical properties of the harbor porpoise lung, Phoceona phocoena. Respir Physiol 36:287–300

    Article  CAS  PubMed  Google Scholar 

  • Kooyman GL, Sinnett EE (1982) Pulmonary shunts in harbor seals and sea lions during simulated dives to depth. Physiol Zool 55:105–111

    Article  Google Scholar 

  • Kvadsheim PH, Miller PJO, Tyack PL, Sivle LLD, Lam FPA, Fahlman A (2012) Estimated tissue and blood N2 levels and risk of in vivo bubble formation in deep-, intermediate- and shallow diving toothed whales during exposure to naval sonar. Front Physiol 3:1–14

    Article  Google Scholar 

  • Kylstra JA, Nantz R, Crowe J, Wagner W, Saltzman HA (1967) Hydraulic compression of mice to 166 atmospheres. Science 158:793–794

    Article  CAS  PubMed  Google Scholar 

  • Lanphier EH (1965) Application of decompression tables to repeated breath-hold dives. In: Rahn H, Yokoyama T (eds) Physiology of breath-hold diving and the Ama of Japan. National Academy of Sciences, National Research Council, Washington, DC, pp 225–234

    Google Scholar 

  • Lenfant C, Johansen K, Torrance JD (1970) Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Respir Physiol 9:277–286

    Article  CAS  PubMed  Google Scholar 

  • Marsh H (1977) The alimentary canal of the dugong. Bull Aust Mamm Soc 4:32

    Google Scholar 

  • McCormick JG, Wever EG, Palin J, Ridgway SH (1970) Sound conduction in the dolphin ear. J Acoust Soc Am 48:1418–1428

    Article  Google Scholar 

  • McDonald BI, Ponganis PJ (2012) Lung collapse in the diving sea lion: hold the nitrogen and save the oxygen. Biol Lett 8:1047–1049

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller PJO, Johnson MP, Tyack PL, Terray EA (2004) Swimming gaits, passive drag and buoyancy of diving sperm whales. Physeter macrocephalus. J Exp Biol 207:1953–1967.

    Article  PubMed  Google Scholar 

  • Moore M, Early GA (2004) Cumulative sperm whale bone damage and the bends. Science 306:2215

    Article  CAS  PubMed  Google Scholar 

  • Mortola JP, Limoges M (2006) Resting breathing frequency in aquatic mammals: a comparative analysis with terrestrial species. Respir Physiol Neurobiol 154:500–514

    Article  PubMed  Google Scholar 

  • Mortola JP, Seguin J (2009) End-tidal CO2 in some aquatic mammals of large size. Zoology 112:77–85

    Article  CAS  PubMed  Google Scholar 

  • Nagel EL, Morgane PJ, McFarland WL, Galliano RE (1968) Rete mirabile of dolphin: its pressure-damping effect on cerebral circulation. Science 161:898–899

    Article  CAS  PubMed  Google Scholar 

  • Odend’hal S, Poulter TC (1966) Pressure regulation in the middle ear cavity of sea lions: a possible mechanism. Science 153:768–769

    Article  PubMed  Google Scholar 

  • Olsen CR, Hale FC, Elsner R (1969) Mechanics of ventilation in the pilot whale. Respir Physiol 7:131–149

    Article  Google Scholar 

  • Parkos CA, Wahrenbrock EA (1987) Acute effects of hypercapnia and hypoxia on minute ventilation in unrestrained Weddell seals. Respir Physiol 67:197–207

    Article  CAS  PubMed  Google Scholar 

  • Parraga DG, Moore M, Fahlman A (2018) Pulmonary ventilation–perfusion mismatch: a novel hypothesis for how diving vertebrates may avoid the bends. Proc R Soc B 285:20180482

    Article  Google Scholar 

  • Paulev P (1965) Decompression sickness following repeated breathhold dives. J Appl Physiol 20:1028–1031

    Article  CAS  PubMed  Google Scholar 

  • Piérard J (1969) Le larynx du phoque de Weddell (Leptonychotes weddelli, Lesson, 1826). Can J Zool 47:77–87

    Article  PubMed  Google Scholar 

  • Piscitelli MA, McLellan WA, Rommel SA, Blum JE, Barco SG, Pabst DA (2010) Lung size and thoracic morphology in shallow and deep-diving cetaceans. J Morphol 271:654–673

    PubMed  Google Scholar 

  • Piscitelli MA, Raverty SA, Lillie MA, Shadwick RE (2013) A review of cetacean lung morphology and mechanics. J Morphol 274:1425–1440

    Article  PubMed  Google Scholar 

  • Ponganis PJ, Kooyman GL, Castellini MA (1993) Determinants of the aerobic dive limit of Weddell seals: analysis of diving metabolic rates, postdive end tidal PO2’s, and blood and muscle oxygen stores. Physiol Zool 66:732–749

    Article  Google Scholar 

  • Purves PE, van Utrecht WL (1963) The anatomy and function of the ear of the bottle-nose dolphin Tursiops truncatus. Beaufortia 9:241–256

    Google Scholar 

  • Qvist J, Hill RD, Schneider RC, Falke KJ, Liggins GC, Guppy M, Elliot RL, Hochachka PW, Zapol WM (1986) Hemoglobin concentrations and blood gas tensions of freediving Weddell seals. J Appl Physiol 61:1560–1569

    Article  CAS  PubMed  Google Scholar 

  • Ridgway SH (1972) Homeostasis in the aquatic environment. In: Ridgway SH (ed) Mammals of the sea: biology and medicine. Charles C. Thomas Publisher, Springfield, pp 590–747

    Google Scholar 

  • Ridgway SH (1983) Dolphin hearing and sound production in health and illness. In: Fay RR, Gourevitch G (eds) Hearing and other senses: presentations in honor of EG Weller. Amphora Press, Gronton, pp 247–296

    Google Scholar 

  • Ridgway SH (1986) Diving by cetaceans. In: Brubakk AC, Kanwisher JW, Sundness G (eds) Diving in animals and man. The Royal Norwegian Society of Science and Letters, Trondheim, pp 33–62

    Google Scholar 

  • Ridgway SH, Bowers CA, Miller D, Schultz ML, Jacobs CA, Dooley CA (1984) Diving and blood oxygen in the white whale. Can J Zool 62:2349–2235

    Article  Google Scholar 

  • Ridgway SH, Howard R (1979) Dolphin lung collapse and intramuscular circulation during free diving: evidence from nitrogen washout. Sci 206:1182–1183

    Article  CAS  Google Scholar 

  • Ridgway SH, Scronce BL, Kanwisher J (1969) Respiration and deep diving in the bottlenose porpoise. Sci 166:1651–1654

    Article  CAS  Google Scholar 

  • Robinson JA, Kropatkin M, Aggeler PM (1969) Hageman factor (factor XII) deficiency in marine mammals. Science 166:1420–1422

    Article  CAS  PubMed  Google Scholar 

  • Roth SH (1979) Physical mechanisms of anesthesia. Annu Rev Pharmacol Toxicol 19:159–178

    Article  CAS  PubMed  Google Scholar 

  • Rothschild BM (1987) Decompression syndrome in fossil marine turtles. Ann Carnegie Mus 56:253–258

    Google Scholar 

  • Rothschild BM (2005) What causes lesions in sperm whale bones? Science 308:631–632

    Article  CAS  PubMed  Google Scholar 

  • Rothschild B, Martin LD (1987) Avascular necrosis: occurrence in diving Cretaceous mosasaurs. Science 236:75–77

    Article  CAS  PubMed  Google Scholar 

  • Rothschild BM, Storrs GW (2003) Decompression syndrome in plesiosaurs (Sauropterygia: Reptilia). J Vertebr Paleontol 23:324–328

    Article  Google Scholar 

  • Schaefer KE, Allison RD, Dougherty JH, Carey CR, Walker R, Yost F, Parker D (1968) Pulmonary and circulatory adjustments determining the limits of depths in breathhold diving. Science 162:1020–1023

    Article  CAS  PubMed  Google Scholar 

  • Schipke JD, Gams E, Kallweit O (2006) Decompression sickness following breath-hold diving. Res Sports Med 14:163–178

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF (1940) Experimental investigations on the respiratory function in diving mammals and birds. Hval Skrif, Norske Videnskamp-Akad, Oslo 22:1–131

    Google Scholar 

  • Scholander PF, Irving L (1941) Experimental investigations on the respiration and diving of the Florida manatee. J Cell Comp Physiol 17:169–191

    Article  CAS  Google Scholar 

  • Schorr GS, Falcone EA, Moretti DJ, Andrews RD (2014) First long-term behavioral records from Cuvier’s beaked whales (Ziphius cavirostris) reveal record-breaking dives. PLoS One 9:e92633. https://doi.org/10.1371/journal.pone.0092633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siebenaller JF (1984) Structural comparison of lactate dehydrogenase homologs differing in sensitivity to hydrostatic pressure. Biochem Biophys Acta 786:161–169

    CAS  PubMed  Google Scholar 

  • Skinner LA, Milsom WK (2004) Respiratory chemosensitivity during wake and sleep in harbour seal pups (Phoca vitulina richardsii). Physiol Biochem Zool 77:847–863

    Article  PubMed  Google Scholar 

  • Slijper E (1962) Whales. Hutchinson, London, p 511

    Google Scholar 

  • Snipes RL (1984) Anatomy of the cecum of the West Indian manatee, Trichechus manatus (Mammalia, Sirenia). Zoomorph 104:67–78

    Article  Google Scholar 

  • Somero GN (1992) Adaptations to high hydrostatic pressure. Annu Rev Physiol 54:557–577

    Article  CAS  PubMed  Google Scholar 

  • Soto NA, Johnson MP, Madsen PT, Díaz F, Domínguez I, Brito A, Tyack P (2008) Cheetahs of the deep sea: deep foraging sprints in short-finned pilot whales off Tenerife (Canary Islands). J Anim Ecol 77:936–947

    Article  Google Scholar 

  • Spragg RG, Ponganis PJ, Marsh JJ, Rau GA, Bernhard W (2004) Surfactant from diving aquatic mammals. J Appl Physiol 96:1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Stahl WR (1967) Scaling of respiratory variables in mammals. J Appl Physiol 22:453–460

    Article  CAS  PubMed  Google Scholar 

  • Stephenson R (2005) Physiological control of diving behaviour in the Weddell seal Leptonychotes weddelli: a model based on cardiorespiratory control theory. J Exp Biol 208:1971–1991

    Article  PubMed  Google Scholar 

  • Tarasoff FJ, Kooyman GL (1973) Observations on the anatomy of the respiratory system of the river otter, sea otter and harp seal. I. The topography, weight and measurements of the lungs. Can J Zool 51:163–170

    Article  CAS  PubMed  Google Scholar 

  • Tenney SM, Remmers JE (1963) Comparative quantitative morphology of the mammalian lung diffusing area. Nature 197:54–56

    Article  CAS  PubMed  Google Scholar 

  • Terasawa F, Ohizumi H, Ohshita I (2010) Effect of breath-hold on blood gas analysis in captive Pacific white-sided dolphins (Lagenorhynchus obliquidens). J Vet Med Sci 72:1221–1224

    Article  PubMed  Google Scholar 

  • Tyack PL, Johnson M, Soto NA, Sturlese A, Madsen PY (2006) Extreme diving of beaked whales. J Exp Biol 209:4238–4253

    Article  PubMed  Google Scholar 

  • Van Elk CE, Epping N, Gans SJM (2001) Pulmonary function measurements in dolphins using capnography. Vet Rec 149:308–309

    Article  PubMed  Google Scholar 

  • Viamonte M, Morgane PJ, Galliano RE, Nagal EL, McFarland WL (1968) Angiography in the living dolphin and observations on blood supply to the brain. Am J Phys 214:1225–1249

    Article  CAS  Google Scholar 

  • Vogl AW, Fisher HD (1982) Arterial retia related to supply of the central nervous system in two small toothed whales – narwhal (Monodon monoceros) and beluga (Delphinapterus leucas). J Morphol 174:41–56

    Article  CAS  PubMed  Google Scholar 

  • Wann KT, MacDonald AG (1980) The effects of pressure on excitable cells. Comp Biochem Physiol 66A:1–12

    Article  Google Scholar 

  • West JB (2012) Respiratory physiology: the essentials. Lippincott, Williams and Wilkins, Philadelphia, p 200

    Google Scholar 

  • West JB, Lahiri S, Maret KH, Peters RM Jr, Pizzo CJ (1983) Barometric pressures at extreme altitudes on Mt. Everest: physiological significance. J Appl Physiol Respir Environ Exercise Physiol 54:1188–1194

    CAS  Google Scholar 

  • Williams TM, Haun JE, Friedl WA (1999) The diving physiology of bottlenose dolphins (Tursiops truncatus) I. Balancing the demands of exercise for energy conservation at depth. J Exp Biol 202:2739–2748

    CAS  PubMed  Google Scholar 

  • Wislocki GB, Belanger LF (1940) The lungs of the larger cetacea compared to those of smaller species. Biol Bull 78:289–297

    Article  Google Scholar 

  • Zimmer WMX, Tyack PL (2007) Repetitive shallow dives pose decompression risk in deep-diving beaked whales. Mar Mamm Sci 23:888–925

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, R.W. (2019). Respiration and the Effects of Pressure. In: Marine Mammals. Springer, Cham. https://doi.org/10.1007/978-3-319-98280-9_3

Download citation

Publish with us

Policies and ethics