Skip to main content

Simulation in Plastic Surgery

  • Chapter
  • First Online:
  • 913 Accesses

Part of the book series: Comprehensive Healthcare Simulation ((CHS))

Abstract

The following chapter provides an overview of the several types of simulation being employed in plastic surgery education and medical practice. Modes of simulation range from inanimate two-dimensional models, to animal models, to fresh perfused human cadaver. Simulation models used in plastic surgery allow for practice of skin and soft tissue techniques, as well as detailed microsurgery. Advances over the years have allowed simulation to be useful not only in conceptual teaching but also in presurgical preparation. Simulation in plastic surgery continues to be explored as an assessment tool for medical trainees. The use of simulation in plastic surgery is still in its fairly early stages and will likely have vast implications in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kazan R, et al. The evolution of surgical simulation: the current state and future avenues for plastic surgery education. Plast Reconstr Surg. 2017;139(2):533e–43e.

    Article  CAS  Google Scholar 

  2. Loukas M, et al. Anatomy in ancient India: a focus on the Susruta Samhita. J Anat. 2010;217(6):646–50.

    Article  Google Scholar 

  3. Majumder S, Southern SJ, Stoker J. The microvascular simulator. (0007-1226 (Print)). Br J Plast Surg. 1999;52(3):242–3.

    CAS  PubMed  Google Scholar 

  4. Senior MA, Southern SJ, Majumder S. Microvascular simulator--a device for micro-anastomosis training. Ann R Coll Surg Engl. 2001;83(5):358–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vadodaria S, et al. The first cleft palate simulator. (1529-4242 (Electronic)). Plast Reconstr Surg. 2007;120(1):259–61.

    Article  CAS  Google Scholar 

  6. Hamilton EC, et al. Improving operative performance using a laparoscopic hernia simulator. (0002-9610 (Print)). Am J Surg. 2001;182(6):725–8.

    Article  CAS  Google Scholar 

  7. Scott DJ, et al. Laparoscopic training on bench models: better and more cost effective than operating room experience? (1072-7515 (Print)). J Am Coll Surg. 2000;191(3):272–83.

    Article  CAS  Google Scholar 

  8. Denadai R, et al. Training on synthetic ethylene-vinyl acetate bench model allows novice medical students to acquire suture skills. (1678-2674 (Electronic)). Acta Cir Bras. 2012;27(3):271–8.

    Article  Google Scholar 

  9. Denadai R, et al. Acquisition of suture skills during medical graduation by instructor-directed training: a randomized controlled study comparing senior medical students and faculty surgeons. Updat Surg. 2013;65(2):131–40.

    Article  Google Scholar 

  10. Denadai R, Toledo AP, Martinhão Souto LR. Basic plastic surgery skills training program on inanimate bench models during medical graduation. Plast Surg Int. 2012;2012:651863.

    PubMed  PubMed Central  Google Scholar 

  11. Sillitoe AT, Platt A. The Z-plasty simulator. Ann R Coll Surg Engl. 2004;86(4):304–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nicolaou M, et al. An inexpensive 3-D model for teaching local flap design on the face and head. (1478–7083 (Electronic)). Ann R Coll Surg Engl. 2006;88(3):320.

    Article  Google Scholar 

  13. Liew SH, et al. A non-animal facial model for teaching local flaps to trainees. Br J Plast Surg. 2004;57(4):374–5.

    Article  CAS  Google Scholar 

  14. Davis CR, Fell M, Khan U. Facial reconstruction using a skull and foam training model. (1878-0539 (Electronic)). J Plast Reconstr Aesthet Surg. 2014;67(1):126–7.

    Article  Google Scholar 

  15. Ross GL, et al. Manoeuvring a-head in plastic surgery. (0007-1226 (Print)). Br J Plast Surg. 2003;56(8):812–4.

    Article  CAS  Google Scholar 

  16. Taylor SR, Chang CW. Gelatin facial skin simulator for cutaneous reconstruction. (1097-6817 (Electronic)). Otolaryngol Head Neck Surg. 2016;154(2):279–81.

    Article  Google Scholar 

  17. Sajan JA. et al. A 3-dimensional organosilicate validated model for facial reconstruction. 2012. Submitted for publication.

    Google Scholar 

  18. Liu MM, Kim J, Jabbour N. Teaching Furlow palatoplasty: the sticky note method. Int J Pediatr Otorhinolaryngol. 2014;78(11):1849–51.

    Article  Google Scholar 

  19. Podolsky DJ, et al. Evaluation and implementation of a high-fidelity Cleft Palate simulator. (1529–4242 (Electronic)). Plast Reconstr Surg. 2017;139(1):85e–96e.

    Article  CAS  Google Scholar 

  20. Hicdonmez T, Parsak T, Cobanoglu S. Simulation of surgery for craniosynostosis: a training model in a fresh cadaveric sheep cranium. J Neurosurg Pediatr. 2006;105(2):150–2.

    Article  Google Scholar 

  21. Coelho G, et al. Anatomical pediatric model for craniosynostosis surgical training. Childs Nerv Syst. 2014;30(12):2009–14.

    Article  Google Scholar 

  22. Kazan R, et al. A novel mammoplasty part-task trainer for simulation of breast augmentation: description and evaluation. (1559-713X (Electronic)). Simul Healthc. 2016;11(1):60–4.

    Article  Google Scholar 

  23. Zucca-Matthes G, Lebovic G, Lyra M. Mastotrainer new version: realistic simulator for training in breast surgery. (1532-3080 (Electronic)). Breast. 2017;31:82–4.

    Article  CAS  Google Scholar 

  24. Eggleston TA, et al. Comparison of two porcine (Sus scrofa domestica) skin models for in vivo near-infrared laser exposure. (1532-0820 (Print)). Comp Med. 2000;50(4):391–7.

    CAS  PubMed  Google Scholar 

  25. Isaacson DS, Edmonds PR, Isaacson G. The galliform (Turkey thigh) model for resident training in facial plastic surgery. (1531-4995 (Electronic)). Laryngoscope. 2014;124(4):866–8.

    Article  Google Scholar 

  26. Bauer F, et al. Reconstruction of facial defects with local flaps – a training model for medical students? Head Face Med. 2015;11(1):30.

    Article  Google Scholar 

  27. Camelo-Nunes JM, Hiratsuka J, et al. Ox tongue: an alternative model for surgical training. (1529–4242 (Electronic)). Plast Reconstr Surg. 2005;116(1):352–4.

    Article  CAS  Google Scholar 

  28. Hassan Z, Hogg F, Graham K. A 3-dimensional model for teaching local flaps using porcine skin. (1536-3708 (Electronic)). Ann Plast Surg. 2014;73(4):362–3.

    Article  CAS  Google Scholar 

  29. Wanzel KR, et al. Teaching technical skills: training on a simple, inexpensive, and portable model. Plast Reconstr Surg. 2002;109:258.

    Article  Google Scholar 

  30. Denadai R, Oshiiwa M, Saad-Hossne R. Does bench model fidelity interfere in the acquisition of suture skills by novice medical students? (1806–9282 (Electronic)). Rev Assoc Med Bras (1992). 2012;58(5):600–6.

    Article  Google Scholar 

  31. Denadai R, Oshiiwa M, Saad-Hossne R. Teaching elliptical excision skills to novice medical students: a randomized controlled study comparing low- and high-Fidelity bench models. Indian J Dermatol. 2014;59(2):169–75.

    Article  Google Scholar 

  32. Denadai R, Saad-Hossne R, Raposo-Amaral CE. Simulation-based rhomboid flap skills training during medical education: comparing low- and high-fidelity bench models. (1536-3732 (Electronic)). J Craniofac Surg. 2014;25(6):2134–8.

    PubMed  Google Scholar 

  33. Al-Bustani S, Halvorson EG. Status of microsurgical simulation training in plastic surgery: a survey of United States program directors. (1536-3708 (Electronic)). Ann Plast Surg. 2016;76(6):713–6.

    Article  CAS  Google Scholar 

  34. Ghanem AM, et al. A systematic review of evidence for education and training interventions in microsurgery. (2234-6163 (Print)). Arch Plast Surg. 2013;40(4):312–9.

    Article  Google Scholar 

  35. Uson J, Calles MC. Design of a new suture practice card for microsurgical training. (0738-1085 (Print)). Microsurgery. 2002;22(8):324–8.

    Article  Google Scholar 

  36. Lannon DA, Atkins JA, Butler PE. Non-vital, prosthetic, and virtual reality models of microsurgical training. (0738-1085 (Print)). Microsurgery. 2001;21(8):389–93.

    Article  CAS  Google Scholar 

  37. Ilie VG, et al. Training of microsurgical skills on nonliving models. (1098-2752 (Electronic)). Microsurgery. 2008;28(7):571–7.

    Article  Google Scholar 

  38. Chan WY, Matteucci SJ, Southern SJ. Validation of microsurgical models in microsurgery training and competence: a review. (0738-1085 (Print)). Microsurgery. 2007;27(5):494–9.

    Article  Google Scholar 

  39. Leclère FMP, et al. Is there good simulation basic training for end-to-side vascular microanastomoses? Aesthet Plast Surg. 2013;37(2):454–8.

    Article  Google Scholar 

  40. Di Cataldo A, et al. Experimental models in microsurgery. (0738-1085 (Print)). Microsurgery. 1998;18(8):454–9.

    Article  Google Scholar 

  41. Carey JN, et al. Simulation of plastic surgery and microvascular procedures using perfused fresh human cadavers. (1878-0539 (Electronic)). J Plast Reconstr Aesthet Surg. 2014;67(2):e42–8.

    Article  Google Scholar 

  42. Grober ED, et al. The educational impact of bench model fidelity on the acquisition of technical skill: the use of clinically relevant outcome measures. (0003-4932 (Print)). Ann Surg. 2004;240(2):374–81.

    Article  Google Scholar 

  43. de Sena DP, et al. Computer-assisted teaching of skin flap surgery: validation of a mobile platform software for medical students. (1932-6203 (Electronic)). PLoS One. 2013;8(7):e65833.

    Article  Google Scholar 

  44. Diaz-Siso JR, et al. Computer simulation and digital resources for plastic surgery psychomotor education. (1529-4242 (Electronic)). Plast Reconstr Surg. 2016;138(4):730e–8e.

    Article  CAS  Google Scholar 

  45. Pfaff MJ, Steinbacher DM. Plastic surgery resident understanding and education using virtual surgical planning. (1529-4242 (Electronic)). Plast Reconstr Surg. 2016;137(1):258e–9e.

    Article  CAS  Google Scholar 

  46. VanKoevering KK, Hollister SJ, Green GE. Advances in 3-dimensional printing in otolaryngology: a review. JAMA Otolaryngol Head Neck Surg. 2017;143(2):178–83.

    Article  Google Scholar 

  47. Bauermeister AJ, Zuriarrain MI, Newman MI. Three-dimensional printing in plastic and reconstructive surgery: a systematic review. (1536-3708 (Electronic)). Ann Plast Surg. 2016;77(5):569–76.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanisha Hutchinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hutchinson, T., Kelts, G., Hilger, P.A. (2019). Simulation in Plastic Surgery. In: Stefanidis, D., Korndorffer Jr., J., Sweet, R. (eds) Comprehensive Healthcare Simulation: Surgery and Surgical Subspecialties. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-98276-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98276-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98275-5

  • Online ISBN: 978-3-319-98276-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics