Skip to main content

Simulation in Urology

  • Chapter
  • First Online:
  • 968 Accesses

Part of the book series: Comprehensive Healthcare Simulation ((CHS))

Abstract

In this chapter we have discussed simulation in urology. This relatively new field is an exciting avenue exploring the possibility of allowing trainees to learn new skills and procedures in a controlled environment that does not jeopardize patient health. This is particularly important as the technologies available to urologists are constantly advancing and practicing urologists are finding themselves having to learn procedures outside of their traditional training. In this chapter we discussed simulators specific to cystoscopy, ureteroscopy, transurethral treatments of BPH, percutaneous procedures, laparoscopy, robotics, and open urologic procedures. As the field continues to grow, we expect new and exciting ways to educate trainees, particularly with the use of simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Preece R. The current role of simulation in urological training. Cent Eur J Urol. 2015;68:207–11.

    Article  CAS  Google Scholar 

  2. Scott DJ, Dunnington GL. The new ACS/APDS skills curriculum: moving the learning curve out of the operating room. J Gastrointest Surg. 2008;12:213–21.

    Article  PubMed  Google Scholar 

  3. Aggarwal R, Darzi A. Technical-skills training in the 21st century. N Engl J Med. 2006;355:2695–6.

    Article  CAS  PubMed  Google Scholar 

  4. Aydin A, Ahmed K, Shafi AM, Khan MS, Dasgupta P. The role of simulation in urological training – a quantitative study of practice and opinions. Surgeon. 2016;14(6):301–7. https://doi.org/10.1016/j.surge.2015.06.003. Epub 2015 Jul 4. PMID: 26148761.

  5. Noureldin YA, Sweet RM. A call for a shift in theory and terminology for validation studies in urological education. J Urol. 2018;199(3):617–20. https://doi.org/10.1016/j.juro.2017.10.022. Epub 2017 Oct 20. PMID: 29061542.

  6. Shah J. Endoscopy through the ages. BJU Int. 2002;89:645–52.

    Article  PubMed  Google Scholar 

  7. Michel MS, Knoll T, Kohrmann KU, Alken P. The URO Mentor: development and evaluation of a new computer-based interactive training system for virtual life-like simulation of diagnostic and therapeutic endourological procedures. BJU Int. 2002;89:174–7.

    Article  CAS  PubMed  Google Scholar 

  8. Schout BM, Muijtjens AM, Hendrikx AJ, et al. Acquisition of flexible cystoscopy skills on a virtual reality simulator by experts and novices. BJU Int. 2010;105:234–9.

    Article  PubMed  Google Scholar 

  9. Schout BM, Ananias HJ, Bemelmans BL, et al. Transfer of cysto-urethroscopy skills from a virtual-reality simulator to the operating room: a randomized controlled trial. BJU Int. 2010;106:226–31; discussion 31.

    Article  PubMed  Google Scholar 

  10. Matsumoto ED, Hamstra SJ, Radomski SB, Cusimano MD. The effect of bench model fidelity on endourological skills: a randomized controlled study. J Urol. 2002;167:1243–7.

    Article  PubMed  Google Scholar 

  11. Bowling CB, Greer WJ, Bryant SA, et al. Testing and validation of a low-cost cystoscopy teaching model: a randomized controlled trial. Obstet Gynecol. 2010;116:85–91.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  13. Jancke G, Rosell J, Jahnson S. Impact of surgical experience on recurrence and progression after transurethral resection of bladder tumour in non-muscle-invasive bladder cancer. Scand J Urol. 2014;48:276–83.

    Article  PubMed  Google Scholar 

  14. Schout BM, Bemelmans BL, Martens EJ, Scherpbier AJ, Hendrikx AJ. How useful and realistic is the uro trainer for training transurethral prostate and bladder tumor resection procedures? J Urol. 2009;181:1297–303; discussion 303.

    Article  PubMed  Google Scholar 

  15. Kruck S, Bedke J, Hennenlotter J, et al. Virtual bladder tumor transurethral resection: an objective evaluation tool to overcome learning curves with and without photodynamic diagnostics. Urol Int. 2011;87:138–42.

    Article  PubMed  Google Scholar 

  16. Reich O, Noll M, Gratzke C, et al. High-level virtual reality simulator for endourologic procedures of lower urinary tract. Urology. 2006;67:1144–8.

    Article  PubMed  Google Scholar 

  17. de Vries AH, van Genugten HG, Hendrikx AJ, et al. The Simbla TURBT simulator in urological residency training: from needs analysis to validation. J Endourol/Endourol Soc. 2016;30:580–7.

    Article  Google Scholar 

  18. Shen Y, Vasandani P, Iyer J, et al. Virtual trainer for intra-detrusor injection of botulinum toxin to treat urinary incontinence. Stud Health Technol Inform. 2012;173:457–62.

    PubMed  Google Scholar 

  19. Wignall GR, Denstedt JD, Preminger GM, et al. Surgical simulation: a urological perspective. J Urol. 2008;179:1690–9.

    Article  PubMed  Google Scholar 

  20. Sweet R, Porter J, Oppenheimer P, Hendrickson D, Gupta A, Weghorst S. Simulation of bleeding in endoscopic procedures using virtual reality. J Endourol/Endourol Soc. 2002;16:451–5.

    Article  Google Scholar 

  21. Hammond L, Ketchum J, Schwartz BF. Accreditation council on graduate medical education technical skills competency compliance: urologic surgical skills. J Am Coll Surg. 2005;201:454–7.

    Article  PubMed  Google Scholar 

  22. Brewin J, Ahmed K, Khan MS, Jaye P, Dasgupta P. Face, content, and construct validation of the Bristol TURP trainer. J Surg Educ. 2014;71:500–5.

    Article  PubMed  Google Scholar 

  23. Viswaroop SB, Gopalakrishnan G, Kandasami SV. Role of transurethral resection of the prostate simulators for training in transurethral surgery. Curr Opin Urol. 2015;25:153–7.

    Article  PubMed  Google Scholar 

  24. Lardennois B, Clement T, Ziade A, Brandt B. Computer stimulation of endoscopic resection of the prostate. Ann Urol. 1990;24:519–23.

    CAS  Google Scholar 

  25. Oppenheimer P, Gupta A, Weghorst S, Sweet R, Porter J. The representation of blood flow in endourologic surgical simulations. Stud Health Technol Inform. 2001;81:365–71.

    CAS  PubMed  Google Scholar 

  26. Sweet RM. Review of trainers for transurethral resection of the prostate skills. J Endourol/Endourol Soc. 2007;21:280–4.

    Article  Google Scholar 

  27. Kallstrom R, Hjertberg H, Svanvik J. Construct validity of a full procedure, virtual reality, real-time, simulation model for training in transurethral resection of the prostate. J Endourol/Endourol Soc. 2010;24:109–15.

    Article  Google Scholar 

  28. Khan R, Aydin A, Khan MS, Dasgupta P, Ahmed K. Simulation-based training for prostate surgery. BJU Int. 2015;116:665–74.

    Article  PubMed  Google Scholar 

  29. Bright E, Vine S, Wilson MR, Masters RS, McGrath JS. Face validity, construct validity and training benefits of a virtual reality TURP simulator. Int J Surg (London, England). 2012;10:163–6.

    Article  Google Scholar 

  30. Zhu H, Zhang Y, Liu JS, Wang G, Yu CF, Na YQ. Virtual reality simulator for training urologists on transurethral prostatectomy. Chin Med J. 2013;126:1220–3.

    PubMed  Google Scholar 

  31. Bachmann A, Muir GH, Collins EJ, et al. 180-W XPS GreenLight laser therapy for benign prostate hyperplasia: early safety, efficacy, and perioperative outcome after 201 procedures. Eur Urol. 2012;61:600–7.

    Article  PubMed  Google Scholar 

  32. Liberale F, Muir GH, Walsh K, Krishnamoorthy R. GreenLight laser prostatectomy: a safe and effective treatment for bladder outlet obstruction by prostate cancer. BJU Int. 2011;107:772–6.

    Article  PubMed  Google Scholar 

  33. Malek RS, Barrett DM, Kuntzman RS. High-power potassium-titanyl-phosphate (KTP/532) laser vaporization prostatectomy: 24 hours later. Urology. 1998;51:254–6.

    Article  CAS  PubMed  Google Scholar 

  34. Malek RS, Kuntzman RS, Barrett DM. Photoselective potassium-titanyl-phosphate laser vaporization of the benign obstructive prostate: observations on long-term outcomes. J Urol. 2005;174:1344–8.

    Article  PubMed  Google Scholar 

  35. Aydin A, Muir GH, Graziano ME, Khan MS, Dasgupta P, Ahmed K. Validation of the GreenLight simulator and development of a training curriculum for photoselective vaporisation of the prostate. BJU Int. 2015;115:994–1003.

    Article  PubMed  Google Scholar 

  36. Herlemann A, Strittmatter F, Buchner A, et al. Virtual reality systems in urologic surgery: an evaluation of the GreenLight simulator. Eur Urol. 2013;64:687–8.

    Article  PubMed  Google Scholar 

  37. Kuntz RM. Current role of lasers in the treatment of benign prostatic hyperplasia (BPH). Eur Urol. 2006;49:961–9.

    Article  PubMed  Google Scholar 

  38. van Rij S, Gilling PJ. In 2013, holmium laser enucleation of the prostate (HoLEP) may be the new 'gold standard'. Curr Urol Rep. 2012;13:427–32.

    Article  PubMed  Google Scholar 

  39. El-Hakim A, Elhilali MM. Holmium laser enucleation of the prostate can be taught: the first learning experience. BJU Int. 2002;90:863–9.

    Article  CAS  PubMed  Google Scholar 

  40. Shah HN, Mahajan AP, Sodha HS, Hegde S, Mohile PD, Bansal MB. Prospective evaluation of the learning curve for holmium laser enucleation of the prostate. J Urol. 2007;177:1468–74.

    Article  PubMed  Google Scholar 

  41. Aydin A, Ahmed K, Brewin J, Khan MS, Dasgupta P, Aho T. Face and content validation of the prostatic hyperplasia model and holmium laser surgery simulator. J Surg Educ. 2014;71:339–44.

    Article  PubMed  Google Scholar 

  42. Kuronen-Stewart C, Ahmed K, Aydin A, et al. Holmium laser enucleation of the prostate: simulation-based training curriculum and validation. Urology. 2015;86:639–46.

    Article  PubMed  Google Scholar 

  43. Gallina A, Suardi N, Montorsi F, et al. Mortality at 120 days after prostatic biopsy: a population-based study of 22,175 men. Int J Cancer. 2008;123:647–52.

    Article  CAS  PubMed  Google Scholar 

  44. Kakehi Y, Naito S. Complication rates of ultrasound-guided prostate biopsy: a nation-wide survey in Japan. Int J Urol. 2008;15:319–21.

    Article  PubMed  Google Scholar 

  45. Chalasani V, Cool DW, Sherebrin S, Fenster A, Chin J, Izawa JI. Development and validation of a virtual reality transrectal ultrasound guided prostatic biopsy simulator. Can Urol Assoc J (Journal de l’Association des urologues du Canada). 2011;5:19–26.

    Article  Google Scholar 

  46. Fiard G, Selmi SY, Promayon E, Vadcard L, Descotes JL, Troccaz J. Initial validation of a virtual-reality learning environment for prostate biopsies: realism matters! J Endourol/Endourol Soc. 2014;28:453–8.

    Article  Google Scholar 

  47. Dauw CA, Simeon L, Alruwaily AF, et al. Contemporary practice patterns of flexible ureteroscopy for treating renal stones: results of a worldwide survey. J Endourol/Endourol Soc. 2015;29:1221–30.

    Article  Google Scholar 

  48. Ghani KR, Sammon JD, Karakiewicz PI, et al. Trends in surgery for upper urinary tract calculi in the USA using the Nationwide Inpatient Sample: 1999–2009. BJU Int. 2013;112:224–30.

    Article  PubMed  Google Scholar 

  49. Skolarikos A, Gravas S, Laguna MP, Traxer O, Preminger GM, de la Rosette J. Training in ureteroscopy: a critical appraisal of the literature. BJU Int. 2011;108:798–805; discussion.

    Google Scholar 

  50. Kishore TA, Pedro RN, Monga M, Sweet RM. Assessment of validity of an OSATS for cystoscopic and ureteroscopic cognitive and psychomotor skills. J Endourol/Endourol Soc. 2008;22:2707–11.

    Article  Google Scholar 

  51. Brunckhorst O, Aydin A, Abboudi H, et al. Simulation-based ureteroscopy training: a systematic review. J Surg Educ. 2015;72:135–43.

    Article  PubMed  Google Scholar 

  52. Matsumoto ED, Hamstra SJ, Radomski SB, Cusimano MD. A novel approach to endourological training: training at the surgical skills center. J Urol. 2001;166:1261–6.

    Article  CAS  PubMed  Google Scholar 

  53. Mishra S, Sharma R, Kumar A, Ganatra P, Sabnis RB, Desai MR. Comparative performance of high-fidelity training models for flexible ureteroscopy: are all models effective? Indian J Urol: IJU. 2011;27:451–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Argun OB, Chrouser K, Chauhan S, et al. Multi-institutional validation of an OSATS for the assessment of cystoscopic and ureteroscopic skills. J Urol. 2015;194:1098–105.

    Article  PubMed  Google Scholar 

  55. Brehmer M, Tolley D. Validation of a bench model for endoscopic surgery in the upper urinary tract. Eur Urol. 2002;42:175–9; discussion 80.

    Article  PubMed  Google Scholar 

  56. Brehmer M, Swartz R. Training on bench models improves dexterity in ureteroscopy. Eur Urol. 2005;48:458–63; discussion 63.

    Article  PubMed  Google Scholar 

  57. White MA, Dehaan AP, Stephens DD, Maes AA, Maatman TJ. Validation of a high fidelity adult ureteroscopy and renoscopy simulator. J Urol. 2010;183:673–7.

    Article  PubMed  Google Scholar 

  58. Villa L, Somani BK, Sener TE, et al. Comprehensive flexible ureteroscopy (FURS) simulator for training in endourology: the K-box model. Cent Eur J Urol. 2016;69:118–20.

    Google Scholar 

  59. Preminger GM, Babayan RK, Merril GL, Raju R, Millman A, Merril JR. Virtual reality surgical simulation in endoscopic urologic surgery. Stud Health Technol Inform. 1996;29:157–63.

    CAS  PubMed  Google Scholar 

  60. Watterson JD, Beiko DT, Kuan JK, Denstedt JD. Randomized prospective blinded study validating acquistion of ureteroscopy skills using computer based virtual reality endourological simulator. J Urol. 2002;168:1928–32.

    Article  PubMed  Google Scholar 

  61. Wilhelm DM, Ogan K, Roehrborn CG, Cadeddu JA, Pearle MS. Assessment of basic endoscopic performance using a virtual reality simulator. J Am Coll Surg. 2002;195:675–81.

    Article  PubMed  Google Scholar 

  62. Jacomides L, Ogan K, Cadeddu JA, Pearle MS. Use of a virtual reality simulator for ureteroscopy training. J Urol. 2004;171:320–3. discussion 3

    Article  PubMed  Google Scholar 

  63. Matsumoto ED, Pace KT, D’A Honey RJ. Virtual reality ureteroscopy simulator as a valid tool for assessing endourological skills. Int J Urol. 2006;13:896–901.

    Article  PubMed  Google Scholar 

  64. Dolmans VE, Schout BM, de Beer NA, Bemelmans BL, Scherpbier AJ, Hendrikx AJ. The virtual reality endourologic simulator is realistic and useful for educational purposes. J Endourol/Endourol Soc. 2009;23:1175–81.

    Article  Google Scholar 

  65. Ogan K, Jacomides L, Shulman MJ, Roehrborn CG, Cadeddu JA, Pearle MS. Virtual ureteroscopy predicts ureteroscopic proficiency of medical students on a cadaver. J Urol. 2004;172:667–71.

    Article  PubMed  Google Scholar 

  66. Knoll T, Trojan L, Haecker A, Alken P, Michel MS. Validation of computer-based training in ureterorenoscopy. BJU Int. 2005;95:1276–9.

    Article  PubMed  Google Scholar 

  67. Watterson JD, Denstedt JD. Ureteroscopy and cystoscopy simulation in urology. J Endourol/Endourol Soc. 2007;21:263–9.

    Article  Google Scholar 

  68. Strohmaier WL, Giese A. Porcine urinary tract as a training model for ureteroscopy. Urol Int. 2001;66:30–2.

    Article  CAS  PubMed  Google Scholar 

  69. Celia A, Zeccolini G. Ex vivo models for training in endourology: construction of the model and simulation of training procedures. Urologia. 2011;78(Suppl 18):16–20.

    Article  PubMed  Google Scholar 

  70. Chou DS, Abdelshehid C, Clayman RV, McDougall EM. Comparison of results of virtual-reality simulator and training model for basic ureteroscopy training. J Endourol/Endourol Soc. 2006;20:266–71.

    Article  Google Scholar 

  71. Soria F, Morcillo E, Sanz JL, Budia A, Serrano A, Sanchez-Margallo FM. Description and validation of realistic and structured endourology training model. Am J Clin Exp Urol. 2014;2:258–65.

    PubMed  PubMed Central  Google Scholar 

  72. Fernstrom I, Johansson B. Percutaneous pyelolithotomy. A new extraction technique. Scand J Urol Nephrol. 1976;10:257–9.

    Article  CAS  PubMed  Google Scholar 

  73. Kim SC, Kuo RL, Lingeman JE. Percutaneous nephrolithotomy: an update. Curr Opin Urol. 2003;13:235–41.

    Article  PubMed  Google Scholar 

  74. Michel MS, Trojan L, Rassweiler JJ. Complications in percutaneous nephrolithotomy. Eur Urol. 2007;51:899–906; discussion.

    Article  PubMed  Google Scholar 

  75. Jang WS, Choi KH, Yang SC, Han WK. The learning curve for flank percutaneous nephrolithotomy for kidney calculi: a single surgeon’s experience. Korean J Urol. 2011;52:284–8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ziaee SA, Sichani MM, Kashi AH, Samzadeh M. Evaluation of the learning curve for percutaneous nephrolithotomy. Urol J. 2010;7:226–31.

    PubMed  Google Scholar 

  77. Bird VG, Fallon B, Winfield HN. Practice patterns in the treatment of large renal stones. J Endourol/Endourol Soc. 2003;17:355–63.

    Article  Google Scholar 

  78. Hammond L, Ketchum J, Schwartz BF. A new approach to urology training: a laboratory model for percutaneous nephrolithotomy. J Urol. 2004;172:1950–2.

    Article  PubMed  Google Scholar 

  79. Strohmaier WL, Giese A. Ex vivo training model for percutaneous renal surgery. Urol Res. 2005;33:191–3.

    Article  PubMed  Google Scholar 

  80. Zhang Y, Ou TW, Jia JG, et al. Novel biologic model for percutaneous renal surgery learning and training in the laboratory. Urology. 2008;72:513–6.

    Article  PubMed  Google Scholar 

  81. Qiu Z, Yang Y, Zhang Y, Sun YC. Modified biological training model for percutaneous renal surgery with ultrasound and fluroscopy guidance. Chin Med J. 2011;124:1286–9.

    PubMed  Google Scholar 

  82. Zhang Y, Yu CF, Jin SH, Li NC, Na YQ. Validation of a novel non-biological bench model for the training of percutaneous renal access. Int Braz J Urol. 2014;40:87–92.

    Article  CAS  PubMed  Google Scholar 

  83. Stern J, Zeltser IS, Pearle MS. Percutaneous renal access simulators. J Endourol/Endourol Soc. 2007;21:270–3.

    Article  Google Scholar 

  84. Knudsen BE, Matsumoto ED, Chew BH, et al. A randomized, controlled, prospective study validating the acquisition of percutaneous renal collecting system access skills using a computer based hybrid virtual reality surgical simulator: phase I. J Urol. 2006;176:2173–8.

    Article  PubMed  Google Scholar 

  85. Park S, Matsumoto ED, Knudsen BE, et al. Face, content and construct validity testing on a virtual reality percutaneous renal access simulator. J Urol. 2006;176(5):2173–8.

    Google Scholar 

  86. Margulis V, Matsumoto E, Knudsen B, et al. Percutaneous renal collecting system access: can virtual reality training shorten the learning curve? J Urol. 2005;173:315.

    Google Scholar 

  87. Veneziano D, Smith A, Reihsen T, Speich J, Sweet RM. The SimPORTAL fluoro-less C-arm trainer: an innovative device for percutaneous kidney access. J Endourol/Endourol Soc. 2015;29:240–5.

    Article  Google Scholar 

  88. Blum CA, Adams DB. Who did the first laparoscopic cholecystectomy? J Minim Access Surg. 2011;7:165–8.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Figert PL, Park AE, Witzke DB, Schwartz RW. Transfer of training in acquiring laparoscopic skills. J Am Coll Surg. 2001;193:533–7.

    Article  CAS  PubMed  Google Scholar 

  90. Brewin J, Nedas T, Challacombe B, Elhage O, Keisu J, Dasgupta P. Face, content and construct validation of the first virtual reality laparoscopic nephrectomy simulator. BJU Int. 2010;106:850–4.

    Article  PubMed  Google Scholar 

  91. da Cruz JA, Dos Reis ST, Cunha Frati RM, et al. Does warm-up training in a virtual reality simulator improve surgical performance? A prospective randomized analysis. J Surg Educ. 2016;73:974–8.

    Article  PubMed  Google Scholar 

  92. Nagendran M, Toon CD, Davidson BR, Gurusamy KS. Laparoscopic surgical box model training for surgical trainees with no prior laparoscopic experience. Cochrane Database of Syst Rev. 2014:Cd010479.

    Google Scholar 

  93. Pitzul KB, Grantcharov TP, Okrainec A. Validation of three virtual reality Fundamentals of Laparoscopic Surgery (FLS) modules. Stud Health Technol Inform. 2012;173:349–55.

    PubMed  Google Scholar 

  94. Derossis AM, Fried GM, Abrahamowicz M, Sigman HH, Barkun JS, Meakins JL. Development of a model for training and evaluation of laparoscopic skills. Am J Surg. 1998;175:482–7.

    Article  CAS  PubMed  Google Scholar 

  95. Fried GM, Feldman LS, Vassiliou MC, et al. Proving the value of simulation in laparoscopic surgery. Ann Surg. 2004;240:518–25; discussion 25–8.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Keyser EJ, Derossis AM, Antoniuk M, Sigman HH, Fried GM. A simplified simulator for the training and evaluation of laparoscopic skills. Surg Endosc. 2000;14:149–53.

    Article  CAS  PubMed  Google Scholar 

  97. Sroka G, Feldman LS, Vassiliou MC, Kaneva PA, Fayez R, Fried GM. Fundamentals of laparoscopic surgery simulator training to proficiency improves laparoscopic performance in the operating room-a randomized controlled trial. Am J Surg. 2010;199:115–20.

    Article  PubMed  Google Scholar 

  98. Smith R, Patel V, Satava R. Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int J Med Robot Comput Assisted Surg: MRCAS. 2014;10:379–84.

    Article  Google Scholar 

  99. Munz Y, Kumar BD, Moorthy K, Bann S, Darzi A. Laparoscopic virtual reality and box trainers: is one superior to the other? Surg Endosc. 2004;18:485–94.

    Article  CAS  PubMed  Google Scholar 

  100. Aslam A, Nason GJ, Giri SK. Homemade laparoscopic surgical simulator: a cost-effective solution to the challenge of acquiring laparoscopic skills? Ir J Med Sci. 2016;185(4):791–6. Epub 2015 Sep 16. PMID: 26377602.

    Google Scholar 

  101. Wilson MS, Middlebrook A, Sutton C, Stone R, McCloy RF. MIST VR: a virtual reality trainer for laparoscopic surgery assesses performance. Ann R Coll Surg Engl. 1997;79:403–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Debes AJ, Aggarwal R, Balasundaram I, Jacobsen MB. A tale of two trainers: virtual reality versus a video trainer for acquisition of basic laparoscopic skills. Am J Surg. 2010;199:840–5.

    Article  PubMed  Google Scholar 

  103. Chaudhry A, Sutton C, Wood J, Stone R, McCloy R. Learning rate for laparoscopic surgical skills on MIST VR, a virtual reality simulator: quality of human-computer interface. Ann R Coll Surg Engl. 1999;81:281–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gallagher AG, Lederman AB, McGlade K, Satava RM, Smith CD. Discriminative validity of the Minimally Invasive Surgical Trainer in Virtual Reality (MIST-VR) using criteria levels based on expert performance. Surg Endosc. 2004;18:660–5.

    Article  CAS  PubMed  Google Scholar 

  105. Gallagher AG, Richie K, McClure N, McGuigan J. Objective psychomotor skills assessment of experienced, junior, and novice laparoscopists with virtual reality. World J Surg. 2001;25:1478–83.

    Article  CAS  PubMed  Google Scholar 

  106. Gallagher AG, Satava RM. Virtual reality as a metric for the assessment of laparoscopic psychomotor skills. Learning curves and reliability measures. Surg Endosc. 2002;16:1746–52.

    Article  CAS  PubMed  Google Scholar 

  107. Maithel S, Sierra R, Korndorffer J, et al. Construct and face validity of MIST-VR, Endotower, and CELTS: are we ready for skills assessment using simulators? Surg Endosc. 2006;20:104–12.

    Article  CAS  PubMed  Google Scholar 

  108. McNatt SS, Smith CD. A computer-based laparoscopic skills assessment device differentiates experienced from novice laparoscopic surgeons. Surg Endosc. 2001;15:1085–9.

    Article  CAS  PubMed  Google Scholar 

  109. Taffinder N, Sutton C, Fishwick RJ, McManus IC, Darzi A. Validation of virtual reality to teach and assess psychomotor skills in laparoscopic surgery: results from randomised controlled studies using the MIST VR laparoscopic simulator. Stud Health Technol Inform. 1998;50:124–30.

    CAS  PubMed  Google Scholar 

  110. Ganai S, Donroe JA, St Louis MR, Lewis GM, Seymour NE. Virtual-reality training improves angled telescope skills in novice laparoscopists. Am J Surg. 2007;193:260–5.

    Article  PubMed  Google Scholar 

  111. Schijven M, Jakimowicz J. Face-, expert, and referent validity of the Xitact LS500 laparoscopy simulator. Surg Endosc. 2002;16:1764–70.

    Article  CAS  PubMed  Google Scholar 

  112. Schijven M, Jakimowicz J. Construct validity: experts and novices performing on the Xitact LS500 laparoscopy simulator. Surg Endosc. 2003;17:803–10.

    Article  CAS  PubMed  Google Scholar 

  113. Schijven MP, Jakimowicz JJ. Introducing the Xitact LS500 laparoscopy simulator: toward a revolution in surgical education. Surg Technol Int. 2003;11:32–6.

    PubMed  Google Scholar 

  114. Ayodeji ID, Schijven M, Jakimowicz J, Greve JW. Face validation of the Simbionix LAP mentor virtual reality training module and its applicability in the surgical curriculum. Surg Endosc. 2007;21:1641–9.

    Article  CAS  PubMed  Google Scholar 

  115. Gurusamy KS, Aggarwal R, Palanivelu L, Davidson BR. Virtual reality training for surgical trainees in laparoscopic surgery. Cochrane Database Syst Rev. 2009:Cd006575.

    Google Scholar 

  116. Hamilton EC, Scott DJ, Fleming JB, et al. Comparison of video trainer and virtual reality training systems on acquisition of laparoscopic skills. Surg Endosc. 2002;16:406–11.

    Article  CAS  PubMed  Google Scholar 

  117. Dunn MD, Portis AJ, Shalhav AL, et al. Laparoscopic versus open radical nephrectomy: a 9-year experience. J Urol. 2000;164:1153–9.

    Article  CAS  PubMed  Google Scholar 

  118. Gill IS, Kavoussi LR, Lane BR, et al. Comparison of 1,800 laparoscopic and open partial nephrectomies for single renal tumors. J Urol. 2007;178:41–6.

    Article  PubMed  Google Scholar 

  119. Kerbl K, Clayman RV, McDougall EM, Kavoussi LR. Laparoscopic nephrectomy: the Washington University experience. Br J Urol. 1994;73:231–6.

    Article  CAS  PubMed  Google Scholar 

  120. Tan HJ, Wolf JS Jr, Ye Z, Wei JT, Miller DC. Population-level comparative effectiveness of laparoscopic versus open radical nephrectomy for patients with kidney cancer. Cancer. 2011;117:4184–93.

    Article  PubMed  Google Scholar 

  121. Fernandez A, Chen E, Moore J, et al. Preliminary assessment of a renal tumor materials model. J Endourol/Endourol Soc. 2011;25:1371–5.

    Article  Google Scholar 

  122. Fernandez A, Chen E, Moore J, et al. A phantom model as a teaching modality for laparoscopic partial nephrectomy. J Endourol/Endourol Soc. 2012;26:1–5.

    Article  Google Scholar 

  123. Abdelshehid CS, Quach S, Nelson C, et al. High-fidelity simulation-based team training in urology: evaluation of technical and nontechnical skills of urology residents during laparoscopic partial nephrectomy. J Surg Educ. 2013;70:588–95.

    Article  PubMed  Google Scholar 

  124. Lee JY, Mucksavage P, McDougall EM. Simulating laparoscopic renal hilar vessel injuries: preliminary evaluation of a novel surgical training model for residents. J Endourol/Endourol Soc. 2012;26:393–7.

    Article  Google Scholar 

  125. Molinas CR, Binda MM, Mailova K, Koninckx PR. The rabbit nephrectomy model for training in laparoscopic surgery. Hum Reprod. 2004;19:185–90.

    Article  PubMed  Google Scholar 

  126. Aydin A, Shafi AM, Khan MS, Dasgupta P, Ahmed K. Current status of simulation and training models in urological surgery: a systematic review. J Urol. 2016;196:312.

    Article  PubMed  Google Scholar 

  127. Wijn RP, Persoon MC, Schout BM, Martens EJ, Scherpbier AJ, Hendrikx AJ. Virtual reality laparoscopic nephrectomy simulator is lacking in construct validity. J Endourol/Endourol Soc. 2010;24:117–22.

    Article  CAS  Google Scholar 

  128. Makiyama K, Nagasaka M, Inuiya T, Takanami K, Ogata M, Kubota Y. Development of a patient-specific simulator for laparoscopic renal surgery. Int J Urol. 2012;19:829–35.

    Article  PubMed  Google Scholar 

  129. Makiyama K, Yamanaka H, Ueno D, et al. Validation of a patient-specific simulator for laparoscopic renal surgery. Int J Urol. 2015;22:572–6.

    Article  PubMed  Google Scholar 

  130. Poniatowski LH, Wolf JS Jr, Nakada SY, Reihsen TE, Sainfort F, Sweet RM. Validity and acceptability of a high-fidelity physical simulation model for training of laparoscopic pyeloplasty. J Endourol/Endourol Soc. 2014;28:393–8.

    Article  Google Scholar 

  131. Jarrett TW, Chan DY, Charambura TC, Fugita O, Kavoussi LR. Laparoscopic pyeloplasty: the first 100 cases. J Urol. 2002;167:1253–6.

    Article  PubMed  Google Scholar 

  132. Raza SJ, Soomroo KQ, Ather MH. “Latex glove” laparoscopic pyeloplasty model: a novel method for simulated training. Urol J. 2011;8:283–6.

    PubMed  Google Scholar 

  133. Yang B, Zhang ZS, Xiao L, Wang LH, Xu CL, Sun YH. A novel training model for retroperitoneal laparoscopic dismembered pyeloplasty. J Endourol/Endourol Soc. 2010;24:1345–9.

    Article  Google Scholar 

  134. Ramachandran A, Kurien A, Patil P, et al. A novel training model for laparoscopic pyeloplasty using chicken crop. J Endourol/Endourol Soc. 2008;22:725–8.

    Article  Google Scholar 

  135. Jiang C, Liu M, Chen J, et al. Construct validity of the chicken crop model in the simulation of laparoscopic pyeloplasty. J Endourol/Endourol Soc. 2013;27:1032–6.

    Article  Google Scholar 

  136. Fu B, Zhang X, Lang B, et al. New model for training in laparoscopic dismembered ureteropyeloplasty. J Endourol/Endourol Soc. 2007;21:1381–5.

    Article  Google Scholar 

  137. Schuessler WW, Schulam PG, Clayman RV, Kavoussi LR. Laparoscopic radical prostatectomy: initial short-term experience. Urology. 1997;50:854–7.

    Article  CAS  PubMed  Google Scholar 

  138. Nadu A, Olsson LE, Abbou CC. Simple model for training in the laparoscopic vesicourethral running anastomosis. J Endourol/Endourol Soc. 2003;17:481–4.

    Article  Google Scholar 

  139. Yang RM, Bellman GC. Laparoscopic urethrovesical anastomosis: a model to assess surgical competency. J Endourol/Endourol Soc. 2006;20:679–82.

    Article  Google Scholar 

  140. Sabbagh R, Chatterjee S, Chawla A, Kapoor A, Matsumoto ED. Task-specific bench model training versus basic laparoscopic skills training for laparoscopic radical prostatectomy: a randomized controlled study. Can Urol Assoc J (Journal de l’Association des urologues du Canada). 2009;3:22–30.

    Article  Google Scholar 

  141. Sabbagh R, Chatterjee S, Chawla A, Hoogenes J, Kapoor A, Matsumoto ED. Transfer of laparoscopic radical prostatectomy skills from bench model to animal model: a prospective, single-blind, randomized, controlled study. J Urol. 2012;187:1861–6.

    Article  PubMed  Google Scholar 

  142. Laguna MP, Arce-Alcazar A, Mochtar CA, Van Velthoven R, Peltier A, de la Rosette JJ. Construct validity of the chicken model in the simulation of laparoscopic radical prostatectomy suture. J Endourol/Endourol Soc. 2006;20:69–73.

    Google Scholar 

  143. Tunitsky-Bitton E, King CR, Ridgeway B, et al. Development and validation of a laparoscopic sacrocolpopexy simulation model for surgical training. J Minim Invasive Gynecol. 2014;21:612–8.

    Article  PubMed  Google Scholar 

  144. Guru KA, Kuvshinoff BW, Pavlov-Shapiro S, et al. Impact of robotics and laparoscopy on surgical skills: a comparative study. J Am Coll Surg. 2007;204:96–101.

    Article  PubMed  Google Scholar 

  145. Zihni AM, Ohu I, Cavallo JA, Ousley J, Cho S, Awad MM. FLS tasks can be used as an ergonomic discriminator between laparoscopic and robotic surgery. Surg Endosc. 2014;28:2459–65.

    Article  PubMed  Google Scholar 

  146. Moglia A, Ferrari V, Morelli L, Ferrari M, Mosca F, Cuschieri A. A systematic review of virtual reality simulators for robot-assisted surgery. Eur Urol. 2016;69:1065–80.

    Article  PubMed  Google Scholar 

  147. Duchene DA, Moinzadeh A, Gill IS, Clayman RV, Winfield HN. Survey of residency training in laparoscopic and robotic surgery. J Urol. 2006;176:2158–66; discussion 67.

    Article  PubMed  Google Scholar 

  148. Preston MA, Blew BD, Breau RH, Beiko D, Oake SJ, Watterson JD. Survey of senior resident training in urologic laparoscopy, robotics and endourology surgery in Canada. Can Urol Assoc J (Journal de l’Association des urologues du Canada). 2010;4:42–6.

    Article  Google Scholar 

  149. Hung AJ, Jayaratna IS, Teruya K, Desai MM, Gill IS, Goh AC. Comparative assessment of three standardized robotic surgery training methods. BJU Int. 2013;112:864–71.

    Article  PubMed  Google Scholar 

  150. Hung AJ, Patil MB, Zehnder P, et al. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol. 2012;187:630–7.

    Article  PubMed  Google Scholar 

  151. Hung AJ, Zehnder P, Patil MB, et al. Face, content and construct validity of a novel robotic surgery simulator. J Urol. 2011;186:1019–24.

    Article  PubMed  Google Scholar 

  152. Kenney PA, Wszolek MF, Gould JJ, Libertino JA, Moinzadeh A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73:1288–92.

    Article  PubMed  Google Scholar 

  153. Korets R, Mues AC, Graversen JA, et al. Validating the use of the Mimic dV-trainer for robotic surgery skill acquisition among urology residents. Urology. 2011;78:1326–30.

    Article  PubMed  Google Scholar 

  154. Seixas-Mikelus SA, Kesavadas T, Srimathveeravalli G, Chandrasekhar R, Wilding GE, Guru KA. Face validation of a novel robotic surgical simulator. Urology. 2010;76:357–60.

    Article  PubMed  Google Scholar 

  155. Seixas-Mikelus SA, Stegemann AP, Kesavadas T, et al. Content validation of a novel robotic surgical simulator. BJU Int. 2011;107:1130–5.

    Article  PubMed  Google Scholar 

  156. Sethi AS, Peine WJ, Mohammadi Y, Sundaram CP. Validation of a novel virtual reality robotic simulator. J Endourol/Endourol Soc. 2009;23:503–8.

    Article  Google Scholar 

  157. Mottrie A, De Naeyer G, Schatteman P, Carpentier P, Sangalli M, Ficarra V. Impact of the learning curve on perioperative outcomes in patients who underwent robotic partial nephrectomy for parenchymal renal tumours. Eur Urol. 2010;58:127–32.

    Article  PubMed  Google Scholar 

  158. Hung AJ, Ng CK, Patil MB, et al. Validation of a novel robotic-assisted partial nephrectomy surgical training model. BJU Int. 2012;110:870–4.

    Article  PubMed  Google Scholar 

  159. Hung AJ, Shah SH, Dalag L, Shin D, Gill IS. Development and validation of a novel robotic procedure specific simulation platform: partial nephrectomy. J Urol. 2015;194:520–6.

    Article  PubMed  Google Scholar 

  160. Kozinn SI, Canes D, Sorcini A, Moinzadeh A. Robotic versus open distal ureteral reconstruction and reimplantation for benign stricture disease. J Endourol/Endourol Soc. 2012;26:147–51.

    Article  Google Scholar 

  161. Rassweiler JJ, Gozen AS, Erdogru T, Sugiono M, Teber D. Ureteral reimplantation for management of ureteral strictures: a retrospective comparison of laparoscopic and open techniques. Eur Urol. 2007;51:512–22; discussion 22–3.

    Article  PubMed  Google Scholar 

  162. Tunitsky E, Murphy A, Barber MD, Simmons M, Jelovsek JE. Development and validation of a ureteral anastomosis simulation model for surgical training. Female Pelvic Med Reconstr Surg. 2013;19:346–51.

    Article  PubMed  Google Scholar 

  163. Kang SG, Cho S, Kang SH, et al. The Tube 3 module designed for practicing vesicourethral anastomosis in a virtual reality robotic simulator: determination of face, content, and construct validity. Urology. 2014;84:345–50.

    Article  PubMed  Google Scholar 

  164. Van Velthoven RF, Ahlering TE, Peltier A, Skarecky DW, Clayman RV. Technique for laparoscopic running urethrovesical anastomosis:the single knot method. Urology. 2003;61:699–702.

    Article  PubMed  Google Scholar 

  165. Kim JY, Kim SB, Pyun JH, et al. Concurrent and predictive validation of robotic simulator tube 3 module. Korean J Urol. 2015;56:756–61.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Chowriappa A, Raza SJ, Fazili A, et al. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int. 2015;115:336–45.

    Article  PubMed  Google Scholar 

  167. Stitzenberg KB, Wong YN, Nielsen ME, Egleston BL, Uzzo RG. Trends in radical prostatectomy: centralization, robotics, and access to urologic cancer care. Cancer. 2012;118:54–62.

    Article  PubMed  Google Scholar 

  168. Freire MP, Choi WW, Lei Y, Carvas F, Hu JC. Overcoming the learning curve for robotic-assisted laparoscopic radical prostatectomy. Urol Clin North Am. 2010;37:37–47, Table of Contents.

    Article  PubMed  Google Scholar 

  169. Hu JC, Wang Q, Pashos CL, Lipsitz SR, Keating NL. Utilization and outcomes of minimally invasive radical prostatectomy. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26:2278–84.

    Article  Google Scholar 

  170. Vickers AJ, Bianco FJ, Serio AM, et al. The surgical learning curve for prostate cancer control after radical prostatectomy. J Natl Cancer Inst. 2007;99:1171–7.

    Article  PubMed  Google Scholar 

  171. Alemozaffar M, Narayanan R, Percy AA, et al. Validation of a novel, tissue-based simulator for robot-assisted radical prostatectomy. J Endourol/Endourol Soc. 2014;28:995–1000.

    Article  Google Scholar 

  172. Volpe A, Ahmed K, Dasgupta P, et al. Pilot validation study of the European Association of Urology robotic training curriculum. Eur Urol. 2015;68:292–9.

    Article  PubMed  Google Scholar 

  173. Ahmed K, Aydin A, Dasgupta P, Khan MS, McCabe JE. A novel cadaveric simulation program in urology. J Surg Educ. 2015;72:556–65.

    Article  PubMed  Google Scholar 

  174. Shergill IS, Shaikh T, Arya M, Junaid I. A training model for suprapubic catheter insertion: the UroEmerge suprapubic catheter model. Urology. 2008;72:196–7.

    Article  PubMed  Google Scholar 

  175. Hossack T, Chris BB, Beer J, Thompson G. A cost-effective, easily reproducible, suprapubic catheter insertion simulation training model. Urology. 2013;82:955–8.

    Article  PubMed  Google Scholar 

  176. Singal A, Halverson A, Rooney DM, Davis LM, Kielb SJ. A validated low-cost training model for suprapubic catheter insertion. Urology. 2015;85:23–6.

    Article  PubMed  Google Scholar 

  177. Grober ED, Hamstra SJ, Wanzel KR, et al. Laboratory based training in urological microsurgery with bench model simulators: a randomized controlled trial evaluating the durability of technical skill. J Urol. 2004;172:378–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baas, W., Schwartz, B. (2019). Simulation in Urology. In: Stefanidis, D., Korndorffer Jr., J., Sweet, R. (eds) Comprehensive Healthcare Simulation: Surgery and Surgical Subspecialties. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-98276-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98276-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98275-5

  • Online ISBN: 978-3-319-98276-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics