Skip to main content

Overview of Simulation in Surgery

  • Chapter
  • First Online:

Part of the book series: Comprehensive Healthcare Simulation ((CHS))

Abstract

Simulation-based training has demonstrated success in educating and assessing all level of learners from medical students to residents to practicing physicians. Along with this success has come the mandate to include a simulation center and/or skills lab at medical schools and many major healthcare organizations. Each institution uses these valuable resources differently. The keys to a successful program that maximizes education outcomes based upon the investment of time and money aren’t completely clear. However, a review of the benefits and drawbacks of each type of simulation will demonstrate that the building blocks for a robust curriculum and eventual assessment of technical and nontechnical skills are available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Owen H. Early use of simulation in medical education. Simul Healthc. 2012;7(2):102–16.

    Article  Google Scholar 

  2. Medical education in the United States and Canada; a report to the Carnegie Foundation for the Advancement of Teaching. [S.l.]: New York; 1910.

    Google Scholar 

  3. Satava RM. Historical review of surgical simulation--a personal perspective. World J Surg. 2008;32(2):141–8.

    Article  Google Scholar 

  4. Britt LD, Richardson J. Residency review committee for surgery: an update. Arch Surg. 2007;142(6):573–5.

    Article  CAS  Google Scholar 

  5. Sutherland LM, Middleton PF, Anthony A, Hamdorf J, Cregan P, Scott D, et al. Surgical simulation: a systematic review. Ann Surg. 2006;243(3):291–300.

    Article  Google Scholar 

  6. Dietl CA, Russell JC. Effects of technological advances in surgical education on quantitative outcomes from residency programs. J Surg Educ. 2016;73(5):819–30.

    Article  Google Scholar 

  7. Piromchai P, Avery A, Laopaiboon M, Kennedy G, O’Leary S. Virtual reality training for improving the skills needed for performing surgery of the ear, nose or throat. Cochrane Database Syst Rev. 2015;9:CD010198.

    Google Scholar 

  8. Dawe SR, Windsor JA, Broeders JA, Cregan PC, Hewett PJ, Maddern GJ. A systematic review of surgical skills transfer after simulation-based training: laparoscopic cholecystectomy and endoscopy. Ann Surg. 2014;259(2):236–48.

    Article  Google Scholar 

  9. Institute of Medicine (US) Committee on Data Standards for Patient Safety, Aspden P, Corrigan JM, Wolcott J, Erickson SM. Patient safety achieving a new standard for care. [S.l.]. Washington (DC): National Academies Press (US); 2004.

    Google Scholar 

  10. Institute of Medicine (U.S.). Committee on Quality of Health Care in America. Crossing the quality chasm : a new health system for the 21st century. Washington, D.C: National Academy Press; 2001. xx, 337 p. p

    Google Scholar 

  11. Stefanidis D, Sevdalis N, Paige J, Zevin B, Aggarwal R, Grantcharov T, et al. Simulation in surgery: what’s needed next? Ann Surg. 2015;261(5):846–53.

    Article  Google Scholar 

  12. Tavakol M, Mohagheghi MA, Dennick R. Assessing the skills of surgical residents using simulation. J Surg Educ. 2008;65(2):77–83.

    Article  Google Scholar 

  13. AdAdams AJ, Wasson EA, Admire JR, Pablo Gomez P, Babayeuski RA, Sako EY, et al. A comparison of teaching modalities and fidelity of simulation levels in teaching resuscitation scenarios. J Surg Educ. 2015;72(5):778–85.

    Google Scholar 

  14. Adams AJ, Wasson EA, Admire JR, Pablo Gomez P, Babayeuski RA, Sako EY, et al. A comparison of teaching modalities and fidelity of simulation levels in teaching resuscitation scenarios. J Surg Educ. 2015;72(5):778–85.

    Google Scholar 

  15. Anastakis DJ, Regehr G, Reznick RK, Cusimano M, Murnaghan J, Brown M, et al. Assessment of technical skills transfer from the bench training model to the human model. Am J Surg. 1999;177(2):167–70.

    Article  CAS  Google Scholar 

  16. Sundar SJ, Healy AT, Kshettry VR, Mroz TE, Schlenk R, Benzel EC. A pilot study of the utility of a laboratory-based spinal fixation training program for neurosurgical residents. J Neurosurg Spine. 2016;24(5):850–6.

    Article  Google Scholar 

  17. Camp CL, Krych AJ, Stuart MJ, Regnier TD, Mills KM, Turner NS. Improving resident performance in knee arthroscopy: a prospective value assessment of simulators and cadaveric skills laboratories. J Bone Joint Surg Am. 2016;98(3):220–5.

    Article  Google Scholar 

  18. Sheckter CC, Kane JT, Minneti M, Garner W, Sullivan M, Talving P, et al. Incorporation of fresh tissue surgical simulation into plastic surgery education: maximizing extraclinical surgical experience. J Surg Educ. 2013;70(4):466–74.

    Article  Google Scholar 

  19. Cabello R, Gonzalez C, Quicios C, Bueno G, Garcia JV, Arribas AB, et al. An experimental model for training in renal transplantation surgery with human cadavers preserved using W. Thiel’s embalming technique. J Surg Educ. 2015;72(2):192–7.

    Article  Google Scholar 

  20. Aboud E, Aboud G, Al-Mefty O, Aboud T, Rammos S, Abolfotoh M, et al. “Live cadavers” for training in the management of intraoperative aneurysmal rupture. J Neurosurg. 2015;123(5):1339–46.

    Article  Google Scholar 

  21. Carey JN, Rommer E, Sheckter C, Minneti M, Talving P, Wong AK, et al. Simulation of plastic surgery and microvascular procedures using perfused fresh human cadavers. J Plast Reconstr Aesthet Surg. 2014;67(2):e42–8.

    Article  Google Scholar 

  22. Ahmed K, Aydin A, Dasgupta P, Khan MS, McCabe JE. A novel cadaveric simulation program in urology. J Surg Educ. 2015;72(4):556–65.

    Article  Google Scholar 

  23. Zenati MA, Bonanomi G, Kostov D, Svanidze O. A new live animal training model for off-pump coronary bypass surgery. Heart Surg Forum. 2002;5(2):150–1.

    PubMed  Google Scholar 

  24. Jacobs LM, Burns KJ, Kaban JM, Gross RI, Cortes V, Brautigam RT, et al. Development and evaluation of the advanced trauma operative management course. J Trauma Inj Infect Crit Care. 2003;55(3):471–9; discussion 479.

    Article  Google Scholar 

  25. Bailey RW, Imbembo AL, Zucker KA. Establishment of a laparoscopic cholecystectomy training program. Am Surg. 1991;57(4):231–6.

    CAS  PubMed  Google Scholar 

  26. Gruber FP, Dewhurst DG. Alternatives to animal experimentation in biomedical education. ALTEX. 2004;21(Suppl 1):33–48.

    PubMed  Google Scholar 

  27. Gala SG, Goodman JR, Murphy MP, Balsam MJ. Use of animals by NATO countries in military medical training exercises: an international survey. Mil Med. 2012;177(8):907–10.

    Article  Google Scholar 

  28. Sanfey H, Ketchum J, Bartlett J, Markwell S, Meier AH, Williams R, et al. Verification of proficiency in basic skills for postgraduate year 1 residents. Surgery. 2010;148(4):759–66; discussion 766–7.

    Article  Google Scholar 

  29. Van Bruwaene S, Schijven MP, Napolitano D, De Win G, Miserez M. Porcine cadaver organ or virtual-reality simulation training for laparoscopic cholecystectomy: a randomized, controlled trial. J Surg Educ. 2015;72(3):483–90.

    Article  Google Scholar 

  30. Al-Abed Y, Cooper DG. A novel home laparoscopic simulator. J Surg Educ. 2009;66(1):1–2.

    Article  Google Scholar 

  31. Desilets DJ, Banerjee S, Barth BA, Kaul V, Kethu SR, Pedrosa MC, et al. Endoscopic simulators. Gastrointest Endosc. 2011;73(5):861–7.

    Article  Google Scholar 

  32. Wais M, Ooi E, Leung RM, Vescan AD, Lee J, Witterick IJ. The effect of low-fidelity endoscopic sinus surgery simulators on surgical skill. Int Forum Allergy Rhinol. 2012;2(1):20–6.

    Article  Google Scholar 

  33. King N, Kunac A, Merchant AM. A review of endoscopic simulation: current evidence on simulators and curricula. J Surg Educ. 2016;73(1):12–23.

    Article  Google Scholar 

  34. Gomez PP, Willis RE, Schiffer BL, Gardner AK, Scott DJ. External validation and evaluation of an intermediate proficiency-based knot-tying and suturing curriculum. J Surg Educ. 2014;71(6):839–45.

    Article  Google Scholar 

  35. Atesok K, Mabrey JD, Jazrawi LM, Egol KA. Surgical simulation in orthopaedic skills training. J Am Acad Orthop Surg. 2012;20(7):410–22.

    PubMed  Google Scholar 

  36. Willis RE, Gomez PP, Ivatury SJ, Mitra HS, Van Sickle KR. Virtual reality simulators: valuable surgical skills trainers or video games? J Surg Educ. 2014;71(3):426–33.

    Article  Google Scholar 

  37. Davies J, Khatib M, Bello F. Open surgical simulation--a review. J Surg Educ. 2013;70(5):618–27.

    Article  Google Scholar 

  38. Johnston MJ, Paige JT, Aggarwal R, Stefanidis D, Tsuda S, Khajuria A, et al. An overview of research priorities in surgical simulation: what the literature shows has been achieved during the 21st century and what remains. Am J Surg. 2016;211(1):214–25.

    Article  Google Scholar 

  39. Sloan DA, Donnelly MB, Johnson SB, Schwartz RW, Strodel WE. Use of an objective structured clinical examination (OSCE) to measure improvement in clinical competence during the surgical internship. Surgery. 1993;114(2):343–50; discussion 350–1.

    CAS  PubMed  Google Scholar 

  40. Pucher PH, Aggarwal R, Singh P, Srisatkunam T, Twaij A, Darzi A. Ward simulation to improve surgical ward round performance: a randomized controlled trial of a simulation-based curriculum. Ann Surg. 2014;260(2):236–43.

    Article  Google Scholar 

  41. Pena G, Altree M, Field J, Sainsbury D, Babidge W, Hewett P, et al. Nontechnical skills training for the operating room: a prospective study using simulation and didactic workshop. Surgery. 2015;158(1):300–9.

    Article  Google Scholar 

  42. Briggs A, Raja AS, Joyce MF, Yule SJ, Jiang W, Lipsitz SR, et al. The role of nontechnical skills in simulated trauma resuscitation. J Surg Educ. 2015;72(4):732–9.

    Article  Google Scholar 

  43. Bearman M, O’Brien R, Anthony A, Civil I, Flanagan B, Jolly B, et al. Learning surgical communication, leadership and teamwork through simulation. J Surg Educ. 2012;69(2):201–7.

    Article  Google Scholar 

  44. Krampe RT, Ericsson KA. Maintaining excellence: deliberate practice and elite performance in young and older pianists. J Exp Psychol Gen. 1996;125(4):331–59.

    Article  CAS  Google Scholar 

  45. Ericsson KA. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med. 2004;79(10 Suppl):S70–81.

    Article  Google Scholar 

  46. Crochet P, Aggarwal R, Dubb SS, Ziprin P, Rajaretnam N, Grantcharov T, et al. Deliberate practice on a virtual reality laparoscopic simulator enhances the quality of surgical technical skills. Ann Surg. 2011;253(6):1216–22.

    Article  Google Scholar 

  47. Hashimoto DA, Sirimanna P, Gomez ED, Beyer-Berjot L, Ericsson KA, Williams NN, et al. Deliberate practice enhances quality of laparoscopic surgical performance in a randomized controlled trial: from arrested development to expert performance. Surg Endosc. 2015;29(11):3154–62.

    Article  Google Scholar 

  48. Roberts NK, Williams RG, Kim MJ, Dunnington GL. The briefing, intraoperative teaching, debriefing model for teaching in the operating room. J Am Coll Surg. 2009;208(2):299–303.

    Article  Google Scholar 

  49. Gostlow H, Marlow N, Babidge W, Maddern G. Systematic review of voluntary participation in simulation-based laparoscopic skills training: motivators and barriers for surgical trainee attendance. J Surg Educ. 2017;74(2):306–18.

    Google Scholar 

  50. Nishisaki A, Donoghue AJ, Colborn S, Watson C, Meyer A, Brown CA 3rd, et al. Effect of just-in-time simulation training on tracheal intubation procedure safety in the pediatric intensive care unit. Anesthesiology. 2010;113(1):214–23.

    Article  Google Scholar 

  51. Auerbach M, Fein DM, Chang TP, Gerard J, Zaveri P, Grossman D, et al. The correlation of workplace simulation-based assessments with Interns’ infant lumbar puncture success: a prospective, multicenter. Obs Study Simul Healthc. 2016;11(2):126–33.

    Article  Google Scholar 

  52. Zendejas B, Ruparel RK, Cook DA. Validity evidence for the fundamentals of laparoscopic surgery (FLS) program as an assessment tool: a systematic review. Surg Endosc. 2016;30(2):512–20.

    Article  Google Scholar 

  53. Hazey JW, Marks JM, Mellinger JD, Trus TL, Chand B, Delaney CP, et al. Why fundamentals of endoscopic surgery (FES)? Surg Endosc. 2014;28(3):701–3.

    Article  Google Scholar 

  54. Wood TC, Raison N, Haldar S, Brunckhorst O, McIlhenny C, Dasgupta P, et al. Training tools for nontechnical skills for surgeons-a systematic review. J Surg Educ. 2017;74(4):548–78.

    Google Scholar 

  55. Sariali E, Catonne Y, Pascal-Moussellard H. Three-dimensional planning-guided total hip arthroplasty through a minimally invasive direct anterior approach. Clinical outcomes at five years’ follow-up. Int Orthop. 2017;41(4):699–705.

    Google Scholar 

  56. Xuyi W, Jianping P, Junfeng Z, Chao S, Yimin C, Xiaodong C. Application of three-dimensional computerised tomography reconstruction and image processing technology in individual operation design of developmental dysplasia of the hip patients. Int Orthop. 2016;40(2):255–65.

    Article  Google Scholar 

  57. Ren J, Zhou Z, Li P, Tang W, Guo J, Wang H, et al. Three-dimensional planning in maxillofacial fracture surgery: computer-aided design/computer-aided manufacture surgical splints by integrating cone beam computerized tomography images into multislice computerized tomography images. J Craniofac Surg. 2016;27(6):1415–9.

    Article  Google Scholar 

  58. Lin JC, Myers E. Three-dimensional printing for preoperative planning of renal artery aneurysm surgery. J Vasc Surg. 2016;64(3):810.

    Article  Google Scholar 

  59. Zhang G, Zhou XJ, Zhu CZ, Dong Q, Su L. Usefulness of three-dimensional(3D) simulation software in hepatectomy for pediatric hepatoblastoma. Surg Oncol. 2016;25(3):236–43.

    Article  Google Scholar 

  60. Zeng N, Fang CH, Fan YF, Yang J, Xiang N, Zhu W, et al. The construction of three-dimensional visualization platform and its application in diagnosis and treatment for hilar cholangiocarcinoma. Zhonghua Wai Ke Za Zhi. 2016;54(9):680–5.

    CAS  PubMed  Google Scholar 

  61. Lichtenstein JT, Zeller AN, Lemound J, Lichtenstein TE, Rana M, Gellrich NC, et al. 3D-printed simulation device for orbital surgery. J Surg Educ. 2017;74(1):2–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don J. Selzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selzer, D.J. (2019). Overview of Simulation in Surgery. In: Stefanidis, D., Korndorffer Jr., J., Sweet, R. (eds) Comprehensive Healthcare Simulation: Surgery and Surgical Subspecialties. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-98276-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98276-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98275-5

  • Online ISBN: 978-3-319-98276-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics