Skip to main content

Clinical Applications in Medical Practice

  • Chapter
  • First Online:
  • 463 Accesses

Abstract

Imaging technologies, such as AS-OCT and UBM, are becoming essential tools for the better diagnosis and management of glaucoma. These devices provide precise visualisation and objective assessment of iridocorneal angle structures and the morphological analysis of filtering bleb that can help to reveal certain features and thereby predict the functional outcome before and after invasive and non-invasive surgery. Anterior segment imaging can explain the reasons whereby this procedure is unsuccessful.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. European Glaucoma Society. Terminolology and GUIDELINES for Glaucoma. 4th ed. Florence: European Glaucoma Society; 2014.

    Google Scholar 

  2. Narayanaswamy A. Diagnostic performance of anterior chamber angle measurements for detecting eyes with narrow angles. Arch Ophthalmol. 2010;128:1321. https://doi.org/10.1001/archophthalmol.2010.231.

    Article  PubMed  Google Scholar 

  3. Lee KS, Sung KR, Kang SY, et al. Residual closure in narrow-angle eyes following laser peripheral iridotomy: anterior segment optical coherence tomography quantitative study. Jpn J Ophthalmol. 2011;55:213–9. https://doi.org/10.1007/s10384-011-0009-3.

    Article  PubMed  Google Scholar 

  4. See JLS, Chew PTK, Smith SD, et al. Changes in anterior segment morphology in response to illumination and after laser iridotomy in Asian eyes: an anterior segment OCT study. Br J Ophthalmol. 2007;91:1485–9. https://doi.org/10.1136/bjo.2006.113654.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cheung CY, Liu S, Weinreb RN, et al. Dynamic analysis of iris configuration with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:4040–6. https://doi.org/10.1167/iovs.09-3941.

    Article  PubMed  Google Scholar 

  6. Masoodi H, Jafarzadehpur E, Esmaeili A, et al. Evaluation of anterior chamber angle under dark and light conditions in angle closure glaucoma: an anterior segment OCT study. Cont Lens Anterior Eye. 2014;37:300–4. https://doi.org/10.1016/j.clae.2014.04.002.

    Article  PubMed  Google Scholar 

  7. Sakata LM, Lavanya R, Friedman DS, et al. Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. Ophthalmology. 2008;115:769–74. https://doi.org/10.1016/j.ophtha.2007.06.030.

    Article  PubMed  Google Scholar 

  8. Nolan WP, See JL, Chew PTK, et al. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology. 2007;114:33–9. https://doi.org/10.1016/j.ophtha.2006.05.073.

    Article  PubMed  Google Scholar 

  9. Tun TA, Baskaran M, Perera SA, et al. Sectoral variations of iridocorneal angle width and iris volume in Chinese Singaporeans: a swept-source optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol. 2014;252:1127–32. https://doi.org/10.1007/s00417-014-2636-0.

    Article  PubMed  Google Scholar 

  10. Mak H, Xu G, Leung CK-S. Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure. Ophthalmology. 2013;120:2517–24. https://doi.org/10.1016/j.ophtha.2013.05.009.

    Article  PubMed  Google Scholar 

  11. Konstantopoulos A, Hossain P, Anderson DF. Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? Br J Ophthalmol. 2007;91:551–7. https://doi.org/10.1136/bjo.2006.103408.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography HHS Public Access. Science. 1991;22:1178–81. https://doi.org/10.1002/jcp.24872.The.

    Article  Google Scholar 

  13. Pavlin CJ, Ritch R, Foster FS. Ultrasound biomicroscopy in plateau iris syndrome. Am J Ophthalmol. 1992;113:390–5.

    Article  CAS  PubMed  Google Scholar 

  14. Pavlin CJ, Harasiewicz K, Foster FS. Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes. Am J Ophthalmol. 1992;113:381–9.

    Article  CAS  PubMed  Google Scholar 

  15. Ishikawa H, Liebmann JM, Ritch R. Quantitative assessment of the anterior segment using ultrasound biomicroscopy. Curr Opin Ophthalmol. 2000;11:133–9.

    Article  CAS  PubMed  Google Scholar 

  16. Yao B, Wu L, Zhang C, Wang X. Ultrasound biomicroscopic features associated with angle closure in fellow eyes of acute primary angle closure after laser iridotomy. Ophthalmology. 2009;116:444–448.e2. https://doi.org/10.1016/j.ophtha.2008.10.019.

    Article  PubMed  Google Scholar 

  17. Lim S-H. Clinical applications of anterior segment optical coherence tomography. J Ophthalmol. 2015;2015:1–12. https://doi.org/10.1155/2015/605729.

    Article  Google Scholar 

  18. Aptel F, Denis P. Optical coherence tomography quantitative analysis of iris volume changes after pharmacologic mydriasis. Ophthalmology. 2010;117:3–10. https://doi.org/10.1016/j.ophtha.2009.10.030.

    Article  PubMed  Google Scholar 

  19. Radhakrishnan S, Goldsmith J, Huang D, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol (Chicago, IL: 1960). 2005;123:1053–9. https://doi.org/10.1001/archopht.123.8.1053.

    Article  Google Scholar 

  20. Cheon MH, Sung KR, Choi EH, et al. Effect of age on anterior chamber angle configuration in Asians determined by anterior segment optical coherence tomography; clinic-based study. Acta Ophthalmol. 2010;88:e205–10. https://doi.org/10.1111/j.1755-3768.2010.01960.x.

    Article  PubMed  Google Scholar 

  21. Salim S. The role of anterior segment optical coherence tomography in glaucoma. J Ophthalmol. 2012;2012:476801. https://doi.org/10.1155/2012/476801.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aslanides IM, Libre PE, Silverman RH, et al. High frequency ultrasound imaging in pupillary block glaucoma. Br J Ophthalmol. 1995;79:972–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mandell MA, Pavlin CJ, Weisbrod DJ, Simpson ER. Anterior chamber depth in plateau iris syndrome and pupillary block as measured by ultrasound biomicroscopy. Am J Ophthalmol. 2003;136:900–3.

    Article  PubMed  Google Scholar 

  24. Quek DTL, Nongpiur ME, Perera SA, Aung T. Angle imaging: advances and challenges. Indian J Ophthalmol. 2011;59(Suppl):S69–75. https://doi.org/10.4103/0301-4738.73699.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dorairaj S, Tsai JC, Grippo TM. Changing trends of imaging in angle closure evaluation. ISRN Ophthalmol. 2012;2012:1–7. https://doi.org/10.5402/2012/597124.

    Article  Google Scholar 

  26. Kobayashi H, Hirose M, Kobayashi K. Ultrasound biomicroscopic analysis of pseudophakic pupillary block glaucoma induced by Soemmering’s ring. Br J Ophthalmol. 2000;84:1142–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sathish S, MacKinnon JR, Atta HR. Role of ultrasound biomicroscopy in managing pseudophakic pupillary block glaucoma. J Cataract Refract Surg. 2000;26:1836–8.

    Article  CAS  PubMed  Google Scholar 

  28. Maslin JS, Barkana Y, Dorairaj SK. Anterior segment imaging in glaucoma: an updated review. Indian J Ophthalmol. 2015;63:630–40. https://doi.org/10.4103/0301-4738.169787.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chalita MR, Li Y, Smith S, et al. High-speed optical coherence tomography of laser iridotomy. Am J Ophthalmol. 2005;140:1133–6. https://doi.org/10.1016/j.ajo.2005.06.054.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gazzard G, Friedman DS, Devereux JG, et al. A prospective ultrasound biomicroscopy evaluation of changes in anterior segment morphology after laser iridotomy in Asian eyes. Ophthalmology. 2003;110:630–8. https://doi.org/10.1016/S0161-6420(02)01893-6.

    Article  PubMed  Google Scholar 

  31. Lee KS, Sung KR, Kang SY, et al. Residual anterior chamber angle closure in narrow-angle eyes following laser peripheral iridotomy: anterior segment optical coherence tomography quantitative study. Jpn J Ophthalmol. 2011;55:213–9. https://doi.org/10.1007/s10384-011-0009-3.

    Article  PubMed  Google Scholar 

  32. Alsagoff Z, Aung T, Ang LP, Chew PT. Long-term clinical course of primary angle-closure glaucoma in an Asian population. Ophthalmology. 2000;107:2300–4.

    Article  CAS  PubMed  Google Scholar 

  33. Ang LP, Aung T, Chew PT. Acute primary angle closure in an Asian population: long-term outcome of the fellow eye after prophylactic laser peripheral iridotomy. Ophthalmology. 2000;107:2092–6.

    Article  CAS  PubMed  Google Scholar 

  34. Aung T, Ang LP, Chan SP, Chew PT. Acute primary angle-closure: long-term intraocular pressure outcome in Asian eyes. Am J Ophthalmol. 2001;131:7–12.

    Article  CAS  PubMed  Google Scholar 

  35. He M, Friedman DS, Ge J, et al. Laser peripheral iridotomy in primary angle-closure suspects: biometric and gonioscopic outcomes: the Liwan Eye Study. Ophthalmology. 2007;114:494–500. https://doi.org/10.1016/j.ophtha.2006.06.053.

    Article  PubMed  Google Scholar 

  36. Trope GE, Pavlin CJ, Bau A, et al. Malignant glaucoma. Clinical and ultrasound biomicroscopic features. Ophthalmology. 1994;101:1030–5.

    Article  CAS  PubMed  Google Scholar 

  37. Nongpiur ME, Ku JYF, Aung T. Angle closure glaucoma: a mechanistic review. Curr Opin Ophthalmol. 2011;22:96–101. https://doi.org/10.1097/ICU.0b013e32834372b9.

    Article  PubMed  Google Scholar 

  38. Quigley HA. Angle-closure glaucoma-simpler answers to complex mechanisms: LXVI Edward Jackson Memorial Lecture. Am J Ophthalmol. 2009;148:657–669.e1.

    Article  PubMed  Google Scholar 

  39. Wang N, Lai M, Chen X, Zhou W. Quantitative real time measurement of iris configuration in living human eyes. Zhonghua Yan Ke Za Zhi. 1998;34:369–72.

    CAS  PubMed  Google Scholar 

  40. Kumar G, Bali SJ, Panda A, et al. Prevalence of plateau iris configuration in primary angle closure glaucoma using ultrasound biomicroscopy in the Indian population. Indian J Ophthalmol. 2012;60:175–8. https://doi.org/10.4103/0301-4738.95865.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kumar RS, Baskaran M, Chew PTK, et al. Prevalence of plateau iris in primary angle closure suspects an ultrasound biomicroscopy study. Ophthalmology. 2008;115:430–4. https://doi.org/10.1016/j.ophtha.2007.07.026.

    Article  PubMed  Google Scholar 

  42. Mochizuki H, Takenaka J, Sugimoto Y, et al. Comparison of the prevalence of plateau iris configurations between angle-closure glaucoma and open-angle glaucoma using ultrasound biomicroscopy. J Glaucoma. 2011;20:315–8. https://doi.org/10.1097/IJG.0b013e3181e3d2da.

    Article  PubMed  Google Scholar 

  43. Mansoori T, Sarvepally VK, Balakrishna N. Plateau iris in primary angle closure glaucoma: an Ultrasound Biomicroscopy Study. J Glaucoma. 2016;25:e82–6. https://doi.org/10.1097/IJG.0000000000000263.

    Article  PubMed  Google Scholar 

  44. Salim S, Dorairaj S. Anterior segment imaging in glaucoma. Semin Ophthalmol. 2013;28:113–25. https://doi.org/10.3109/08820538.2013.777749.

    Article  PubMed  Google Scholar 

  45. Parc C, Laloum J, Bergès O. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of plateau iris. J Fr Ophtalmol. 2010;33(4):266.e1–3.

    Google Scholar 

  46. Filipe HP, Carvalho M, Freitas L. Ultrasound biomicroscopy and anterior segment optical coherence tomography in the diagnosis and management of glaucoma. Am J Ophthalmol. 2016;15(2).

    Google Scholar 

  47. Karickhoff JR. Pigmentary dispersion syndrome and pigmentary glaucoma: a new mechanism concept, a new treatment, and a new technique. Ophthalmic Surg. 1992;23:269–77.

    CAS  PubMed  Google Scholar 

  48. Aptel F, Beccat S, Fortoul V, Denis P. Biometric analysis of pigment dispersion syndrome using anterior segment optical coherence tomography. Ophthalmology. 2011;118:1563–70. https://doi.org/10.1016/j.ophtha.2011.01.001.

    Article  PubMed  Google Scholar 

  49. Kanadani FN, Dorairaj S, Langlieb AM, et al. Ultrasound biomicroscopy in asymmetric pigment dispersion syndrome and pigmentary glaucoma. Arch Ophthalmol (Chicago, IL: 1960). 2006;124:1573–6. https://doi.org/10.1001/archopht.124.11.1573.

    Article  Google Scholar 

  50. Guo S, Gewirtz M, Thaker R, Reed M. Characterizing pseudoexfoliation syndrome through the use of ultrasound biomicroscopy. J Cataract Refract Surg. 2006;32(4):614–7.

    Google Scholar 

  51. Tamm ER. The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res. 2009;88:648–55. https://doi.org/10.1016/j.exer.2009.02.007.

    Article  CAS  PubMed  Google Scholar 

  52. Samples JR, IIK A, editors. Surgical innovations in glaucoma. New York: Springer Science+Business Media; 2013.

    Google Scholar 

  53. Yan X, Li M, Chen Z, et al. Schlemm’s canal and trabecular meshwork in eyes with primary open angle glaucoma: a comparative study using high-frequency ultrasound biomicroscopy. PLoS One. 2016;11:1–15. https://doi.org/10.1371/journal.pone.0145824.

    Article  CAS  Google Scholar 

  54. Kagemann L, Wang B, Wollstein G, et al. IOP elevation reduces schlemm’s canal cross-sectional area. Invest Ophthalmol Vis Sci. 2014;55:1805–9. https://doi.org/10.1167/iovs.13-13264.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hong J, Xu J, Wei A, et al. Spectral-domain optical coherence tomographic assessment of Schlemm’s canal in Chinese subjects with primary open-angle glaucoma. Ophthalmology. 2013;120:709–15. https://doi.org/10.1016/j.ophtha.2012.10.008.

    Article  PubMed  Google Scholar 

  56. Irshad FA, Mayfield MS, Zurakowski D, Ayyala RS. Variation in Schlemm’s canal diameter and location by ultrasound biomicroscopy. Ophthalmology. 2010;117:916–20. https://doi.org/10.1016/j.ophtha.2009.09.041.

    Article  PubMed  Google Scholar 

  57. Paulaviciute-Baikstiene D, Vaiciuliene R, Jasinskas V, Januleviciene I. Evaluation of outflow structures in vivo after the phacocanaloplasty. J Ophthalmol. 2016;2016:4519846. https://doi.org/10.1155/2016/4519846.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang F, Shi G, Li X, et al. Comparison of Schlemm’s canal’s biological parameters in primary open-angle glaucoma and normal human eyes with swept source optical. J Biomed Opt. 2012;17:116008. https://doi.org/10.1117/1.JBO.17.11.116008.

    Article  PubMed  Google Scholar 

  59. Kagemann L, Wollstein G, Ishikawa H, et al. Identification and assessment of Schlemm’s canal by spectral-domain optical coherence tomography. Investig Opthalmol Vis Sci. 2010;51:4054. https://doi.org/10.1167/iovs.09-4559.

    Article  Google Scholar 

  60. Grieshaber MC. Ab externo Schlemm’s canal surgery: viscocanalostomy and canaloplasty. Dev Ophthalmol. 2012;50:109–24. https://doi.org/10.1159/000334793.

    Article  PubMed  Google Scholar 

  61. Vaiciuliene R, Körber N, Jasinskas V. Clinical evaluation of aqueous outflow system in vivo and correlation with intraocular pressure before and after non-penetrating glaucoma surgery. Int Ophthalmol. 2017. https://doi.org/10.1007/s10792-017-0715-z

  62. Fuest M, Kuerten D, Koch E, et al. Evaluation of early anatomical changes following canaloplasty with anterior segment spectral-domain optical coherence tomography and ultrasound biomicroscopy. Acta Ophthalmol. 2016;94:e287–92. https://doi.org/10.1111/aos.12917.

    Article  PubMed  Google Scholar 

  63. Powers TP, Stewart WC, Stroman GA. Ultrastructural features of filtration blebs with different clinical appearances. Ophthalmic Surg Lasers. 1996;27:790–4.

    CAS  PubMed  Google Scholar 

  64. Wells AP, Ashraff NN, Hall RC, Purdie G. Comparison of two clinical bleb grading systems. Ophthalmology. 2006;113:77–83. https://doi.org/10.1016/j.ophtha.2005.06.037.

    Article  PubMed  Google Scholar 

  65. Cantor LB, Mantravadi A, WuDunn D, et al. Morphologic classification of filtering blebs after glaucoma filtration surgery: The Indiana Bleb Appearance Grading Scale. J Glaucoma. 2003;12:266–71. https://doi.org/10.1097/00061198-200306000-00015.

    Article  PubMed  Google Scholar 

  66. Wells AP, Crowston JG, Marks J, et al. A pilot study of a system for grading of drainage blebs after glaucoma surgery. J Glaucoma. 2004;13:454–60. https://doi.org/10.1097/00061198-200412000-00005.

    Article  CAS  PubMed  Google Scholar 

  67. Klink J, Schmitz B, Lieb WE, et al. Filtering bleb function after clear cornea phacoemulsification: A prospective study. Br J Ophthalmol. 2005;89:597–601. https://doi.org/10.1136/bjo.2004.041988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Picht G, Grehn F. Development of the filtering bleb after trabeculectomy. Classification, histopathology, wound healing process. Ophthalmology. 1998;95:W380–7.

    Article  CAS  Google Scholar 

  69. Picht G, Grehn F. Classification of filtering blebs in trabeculectomy: biomicroscopy and functionality. Curr Opin Ophthalmol. 1998;9:2–8.

    Article  CAS  PubMed  Google Scholar 

  70. Furrer S, Menke MN, Funk J, Töteberg-Harms M. Evaluation of filtering blebs using the Wuerzburg bleb classification score compared to clinical findings. BMC Ophthalmol. 2012;12:24. https://doi.org/10.1186/1471-2415-12-24.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Thatte S, Rana R, Gaur N. Appraisal of bleb using trio of intraocular pressure, morphology on slit lamp, and gonioscopy. Ophthalmol Eye Dis. 2016;8:41–8. https://doi.org/10.4137/OED.S40388.TYPE.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology. 1991;98:287–95.

    Article  CAS  PubMed  Google Scholar 

  73. Ishikawa H, Schuman J. Anterior segment imaging: ultrasound biomicroscopy. Ophthalmol Clin North Am. 2004;17:7–20. https://doi.org/10.1016/j.ohc.2003.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Klink T, Kann G, Ellinger P, et al. The prognostic value of the wuerzburg bleb classification score for the outcome of trabeculectomy. Ophthalmol J Int d’ophtalmologie Int J Ophthalmol Zeitschrift fur Augenheilkd. 2011;225:55–60. https://doi.org/10.1159/000314717.

    Article  Google Scholar 

  75. Sacu S, Rainer G, Findl O, et al. Correlation between the early morphological appearance of filtering blebs and outcome of trabeculectomy with mitomycin C. J Glaucoma. 2003;12:430–5. https://doi.org/10.1097/00061198-200310000-00006.

    Article  PubMed  Google Scholar 

  76. Marquardt D, Lieb WE, Grehn F. Intensified postoperative care versus conventional follow-up: a retrospective long-term analysis of 177 trabeculestomies. Graefes Arch Clin Exp Ophthalmol. 2004;242:106–13. https://doi.org/10.1007/s00417-003-0775-9.

    Article  PubMed  Google Scholar 

  77. Ciancaglini M, Carpineto P, Agnifili L, et al. Filtering bleb functionality: a clinical, anterior segment optical coherence tomography and in vivo confocal microscopy study. J Glaucoma. 2008;17:308–17. https://doi.org/10.1097/IJG.0b013e31815c3a19.

    Article  PubMed  Google Scholar 

  78. Paulaviciute-Baikstiene D, Renata Vaiciuliene IJ. Filtering blebs structure and function evaluation using optical coherence tomography. J Model Ophthalmol. 2016;1:10–9.

    Article  Google Scholar 

  79. Caglar C, Karpuzoglu N, Batur M, Yasar T. In vivo confocal microscopy and biomicroscopy of filtering blebs after trabeculectomy. J Glaucoma. 2016;25:e377–83. https://doi.org/10.1097/IJG.0000000000000377.

    Article  PubMed  Google Scholar 

  80. Zhang Y, Wu Q, Zhang M, et al. Evaluating subconjunctival bleb function after trabeculectomy using slit-lamp optical coherence tomography and ultrasound biomicroscopy. Chin Med J (Engl). 2008;121:1274–9.

    Article  Google Scholar 

  81. Guthoff R, Klink T, Schlunck G, Grehn F. In vivo confocal microscopy of failing and functioning filtering blebs: results and clinical correlations. J Glaucoma. 2006;15:552–8. https://doi.org/10.1097/01.ijg.0000212295.39034.10.

    Article  PubMed  Google Scholar 

  82. Theelen T, Wesseling P, Keunen JEE, Klevering BJ. A pilot study on slit lamp-adapted optical coherence tomography imaging of trabeculectomy filtering blebs. Graefes Arch Clin Exp Ophthalmol. 2007;245:877–82. https://doi.org/10.1007/s00417-006-0476-2.

    Article  PubMed  Google Scholar 

  83. Hirooka K, Takagishi M, Baba T, et al. Stratus optical coherence tomography study of filtering blebs after primary trabeculectomy with a fornix-based conjunctival flap. Acta Ophthalmol. 2010;88:60–4. https://doi.org/10.1111/j.1755-3768.2008.01401.x.

    Article  PubMed  Google Scholar 

  84. Hu C-Y, Matsuo H, Tomita G, et al. Clinical characteristics and leakage of functioning blebs after trabeculectomy with mitomycin-C in primary glaucoma patients. Ophthalmology. 2003;110:345–52. https://doi.org/10.1016/S0161-6420(02)01739-6.

    Article  PubMed  Google Scholar 

  85. DeBry PW, Perkins TW, Heatley G, et al. Incidence of late-onset bleb-related complications following trabeculectomy with mitomycin. Arch Ophthalmol. 2002;120:297–300. https://doi.org/10.1001/archopht.120.3.297.

    Article  CAS  PubMed  Google Scholar 

  86. Soltau JB, Rothman RF, Budenz DL, et al. Risk factors for glaucoma filtering bleb infections. Arch Ophthalmol. 2000;118:338–42. https://doi.org/10.1097/00132578-200007000-00012.

    Article  CAS  PubMed  Google Scholar 

  87. Kasaragod D, Fukuda S, Ueno Y, et al. Objective evaluation of functionality of filtering bleb based on polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57:2305–10. https://doi.org/10.1167/iovs.15-18178.

    Article  PubMed  Google Scholar 

  88. Kawana K, Kiuchi T, Yasuno Y, Oshika T. Evaluation of trabeculectomy blebs using 3-dimensional cornea and anterior segment optical coherence tomography. Ophthalmology. 2009;116:848–55. https://doi.org/10.1016/j.ophtha.2008.11.019.

    Article  PubMed  Google Scholar 

  89. Mastropasqua R, Fasanella V, Agnifili L, et al. Anterior segment optical coherence tomography imaging of conjunctival filtering blebs after glaucoma surgery. Biomed Res Int. 2014;2014:610623. https://doi.org/10.1155/2014/610623.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kokubun T, Tsuda S, Kunikata H, et al. Anterior-segment optical coherence tomography for predicting postoperative outcomes after trabeculectomy. Curr Eye Res. 2018;43:762–70. https://doi.org/10.1080/02713683.2018.1446535.

    Article  PubMed  Google Scholar 

  91. Tominaga A, Miki A, Yamazaki Y, et al. The assessment of the filtering bleb function with anterior segment optical coherence tomography. J Glaucoma. 2010;19:551–5. https://doi.org/10.1097/IJG.0b013e3181ca76f3.

    Article  PubMed  Google Scholar 

  92. Kojima S, Inoue T, Nakashima K-I, et al. Filtering blebs using 3-dimensional anterior-segment optical coherence tomography. JAMA Ophthalmol. 2015;133:148. https://doi.org/10.1001/jamaophthalmol.2014.4489.

    Article  PubMed  Google Scholar 

  93. Inoue T, Matsumura R, Kuroda U, et al. Precise identification of filtration openings on the scleral flap by three-dimensional anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:8288–94. https://doi.org/10.1167/iovs.12-10941.

    Article  PubMed  Google Scholar 

  94. Singh M, Aung T, Friedman DS, et al. Anterior segment optical coherence tomography imaging of trabeculectomy blebs before and after laser suture lysis. Am J Ophthalmol. 2007;143:873–5. https://doi.org/10.1016/j.ajo.2006.12.001.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paulaviciute-Baikstiene, D., Vaiciuliene, R. (2019). Clinical Applications in Medical Practice. In: Januleviciene, I., Harris, A. (eds) Biophysical Properties in Glaucoma. Springer, Cham. https://doi.org/10.1007/978-3-319-98198-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98198-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98197-0

  • Online ISBN: 978-3-319-98198-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics