Skip to main content

Translaminar Pressure Difference

  • Chapter
  • First Online:
  • 430 Accesses

Abstract

Growing evidence suggests a possible link between intracranial pressure and the pathogenesis of glaucomatous optic neuropathy, a low cerebrospinal fluid pressure in the retrobulbar region of the orbit may theoretically have a similar effect as an increased intraocular pressure on translaminar pressure difference.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ren R, Zhang X, Wang N, Li B, Tian G, Jonas JB. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol. 2011;89(2):142–8.

    Article  Google Scholar 

  2. Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, et al. Cerebrospinal fluid pressure in Glaucoma. A prospective study. Ophthalmology [Internet]. 2010;117(2):259–66. https://doi.org/10.1016/j.ophtha.2009.06.058.

    Article  Google Scholar 

  3. Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115(5):763–8.

    Article  Google Scholar 

  4. Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci [Internet]. 2008;49(12):5412–8. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2745832&tool=pmcentrez&rendertype=abstract

    Article  Google Scholar 

  5. Siaudvytyte L, Januleviciene I, Ragauskas A, Bartusis L, Meiliuniene I, Siesky B, et al. The difference in translaminar pressure gradient and neuroretinal rim area in glaucoma and healthy subjects. J Ophthalmol. 2014;2014:937360.

    Article  Google Scholar 

  6. Siaudvytyte L, Januleviciene I, Daveckaite A, Ragauskas A, Siesky B, Harris A. Neuroretinal rim area and ocular haemodynamic parameters in patients with normal-tension glaucoma with differing intracranial pressures. Br J Ophthalmol. 2016;100:1134–8.

    Article  Google Scholar 

  7. Jonas JB, Nangia V, Wang N, Bhate K, Nangia P, Nangia P, et al. Trans-lamina cribrosa pressure difference and open-angle glaucoma. The Central India Eye and Medical Study. PLoS One. 2013;8(12):2–9.

    Article  Google Scholar 

  8. Jonas JB, Wang NL, Wang YX, You QS, Xie XB, Yang DY, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma. The Beijing Eye Study 2011. Acta Ophthalmol. 2015;93(1):e7–13.

    Article  Google Scholar 

  9. Morgan WH, Yu DY, Alder VA, Cringle SJ, Cooper RL, House OH, et al. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci. 1998;39(8):1419–28.

    CAS  PubMed  Google Scholar 

  10. Gilland O. Normal cerebrospinal-fluid pressure. N Engl J Med. 1969;280(16):904–5.

    CAS  PubMed  Google Scholar 

  11. Greenfield DS, Wanichwecharungruang B, Liebmann JM, Ritch R. Pseudotumor cerebri appearing with unilateral papilledema after trabeculectomy. Arch Ophthalmol (Chicago, IL: 1960). 1997;115:423–6.

    Article  CAS  Google Scholar 

  12. Burgoyne CF, Downs JC, Bellezza AJ, Suh J-KF, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24(1):39–73.

    Article  Google Scholar 

  13. Lee DS, Lee EJ, Kim T-W, Park YH, Kim J, Lee JW, et al. Influence of translaminar pressure dynamics on the position of the anterior lamina cribrosa surface. Invest Ophthalmol Vis Sci. 2015;56(5):2833–41.

    Article  Google Scholar 

  14. Morgan WH, Chauhan BC, Yu DY, Cringle SJ, Alder VA, House PH. Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Investig Ophthalmol Vis Sci. 2002;43(10):3236–42.

    Google Scholar 

  15. Zhao D, He Z, Vingrys AJ, Bui BV, Nguyen CTO. The effect of intraocular and intracranial pressure on retinal structure and function in rats. Physiol Rep. 2015;3(8):e12507.

    Article  Google Scholar 

  16. Volkov VV. Essential element of the glaucomatous process neglected in clinical practice. Oftalmol Zh. 1976;31(7):500–4.

    CAS  PubMed  Google Scholar 

  17. Morgan WH, Yu DY, Balaratnasingam C. The role of cerebrospinal fluid pressure in Glaucoma pathophysiology: the dark side of the optic disc. J Glaucoma [Internet]. 2008;17(5):408–13. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00061198-200808000-00014

    Article  Google Scholar 

  18. Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol (Chicago, IL: 1960). 1991;109(8):1090–5.

    Article  CAS  Google Scholar 

  19. The Advanced Glaucoma Intervention Study (AGIS). 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 2000;130(4):429–40.

    Article  Google Scholar 

  20. Jonas JB, Wang N, Nangia V. Ocular perfusion pressure vs estimated trans–lamina cribrosa pressure difference in glaucoma: the Central India Eye and Medical Study (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc. 2015;113:16.

    Google Scholar 

  21. Li L, Li C, Zhong H, Tao Y, Yuan Y, Pan C-W. Estimated cerebrospina fluid pressure and the 5-year incidence of primary open-angle glaucoma in a Chinese population. PLoS One. 2016;11:e0162862.

    Article  Google Scholar 

  22. Ren R, Wang N, Zhang X, Cui T, Jonas JB. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2011;249(7):1057–63.

    Article  Google Scholar 

  23. Pircher A, Remonda L, Weinreb RN, Killer HE. Translaminar pressure in Caucasian normal tension glaucoma patients. Acta Ophthalmol. 2017;95(7):e524–31.

    Article  Google Scholar 

  24. Linden C, Qvarlander S, Johannesson G, Johansson E, Ostlund F, Malm J, et al. Normal-tension glaucoma has normal intracranial pressure: a prospective study of intracranial pressure and intraocular pressure in different body positions. Ophthalmology. 2018;125(3):361–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Siaudvytyte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siaudvytyte, L. (2019). Translaminar Pressure Difference. In: Januleviciene, I., Harris, A. (eds) Biophysical Properties in Glaucoma. Springer, Cham. https://doi.org/10.1007/978-3-319-98198-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98198-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98197-0

  • Online ISBN: 978-3-319-98198-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics