Skip to main content

Evaluation of Glaucomatous Structural Changes

  • Chapter
  • First Online:
Book cover Biophysical Properties in Glaucoma
  • 432 Accesses

Abstract

Glaucoma is defined as a specific optic neuropathy [1], therefore optic nerve head (ONH) evaluation is one of the essential elements in disease detection and monitoring. Qualitative assessment of the ONH neuroretinal rim (NRR), cup-to-disc ratio, and retinal nerve fiber layer (RNFL) defect have been reported as valuable parameters in evaluation of glaucomatous damage with different degrees [2].

As structural ONH and RNFL changes usually manifest before functional visual field loss, the appliance of reliable quantifying assessment method may provide a more reliable and reproducible measurements in glaucoma [3, 4]. The introduction of modern imaging modalities such as the confocal scanning laser ophthalmoscope (GDx), scanning laser polarimetry (HRT), and optical coherence tomography (OCT) have offered objective and reproducible measurements of the topographic parameters of both the ONH and the RNFL. However, the scanning laser polarimeter (GDx Nerve Fiber Analyzer; Laser Diagnostics Technologies, San Diego, CA) assesses the RNFL thickness around the optic disc, confocal scanning laser ophthalmoscopy (Heidelberg Retinal Tomograph [HRT]; Heidelberg Engineering, Heidelberg, Germany) and optical coherence tomography (OCT, various devices and manufacturers are available) provide quantitative data of both RNFL thickness and topographic parameters of the ONH [5].

As indicators of biological processes are estimated as disease markers, changes in the ONH topography, peripapillary RNFL thickness, the ganglion cell layers thickness in the macula will be discussed in this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bathija R, Gupta N, Zangwill L, Weinreb RN. Changing definition of glaucoma. J Glaucoma. 1998;7(3):165–9.

    Article  CAS  Google Scholar 

  2. Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol. 1999;43:293–320.

    Article  CAS  Google Scholar 

  3. Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci. 2000;41:741–8.

    CAS  PubMed  Google Scholar 

  4. Sommer A, Pollack I, Maumenee AE. Optic disc parameters and onset of glaucomatous field loss. I. Methods and progressive changes in disc morphology. Arch Ophthalmol. 1979;97:1444–8.

    Article  CAS  Google Scholar 

  5. Sharma P, Sample PA, Zangwill LM, Schuman JS. Diagnostic tools for Glaucoma detection and management. Surv Ophthalmol. 2008;53(6 SUPPL):1–24. https://doi.org/10.1016/j.survophthal.2008.08.003.

    Article  Google Scholar 

  6. Bendschneider D, Tornow RP, Horn FK, Laemmer R, Roessler CW, Juenemann AG, Kruse FE, Mardin CY. Retinal nerve fiber layer thickness in normals measured by spectral domain OCT. J Glaucoma. 2010;19(7):475–82. https://doi.org/10.1097/IJG.0b013e3181c4b0c7.

    Article  PubMed  Google Scholar 

  7. Michelessi M, Lucenteforte E, Oddone F, Brazzelli M, Parravano M, et al. Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database Syst Rev. 2015;11:CD008803. https://doi.org/10.1002/14651858.CD008803.pub2.

    Article  PubMed Central  Google Scholar 

  8. Zangwill LM, Bowd C, Berry CC, Williams J, Blumenthal EZ, et al. Discriminating between normal and glaucomatous eyes using the Heidelberg retina Tomograph, GDx nerve fiber analyzer, and optical coherence tomograph. Arch Ophthalmol. 2001;119(7):985–93. https://doi.org/10.1001/archopht.119.7.985.

    Article  CAS  PubMed  Google Scholar 

  9. Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 2014;98:ii15–9. https://doi.org/10.1136/bjophthalmol-2013-304326.

    Article  PubMed  Google Scholar 

  10. Sung KR, Kim JS, Wollstein G, Folio L, Kook MS, Schuman JS. Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol. 2011;95:909–14. https://doi.org/10.1136/bjo.2010.186924.

    Article  PubMed  Google Scholar 

  11. Leung CK, Cheung CYL, Weinreb RN, Qiu K, Liu S, Li H, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci. 2010;51:217–22. https://doi.org/10.1167/iovs.09-3468.

    Article  PubMed  Google Scholar 

  12. Mwanza J-C, Oakley JD, Budenz DL, Anderson DR, The Cirrus OCT Normative Database Study Group. Ability of CirrusTM HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology. 2011;118(2):241–248.e1. https://doi.org/10.1016/j.ophtha.2010.06.036.

    Article  PubMed  Google Scholar 

  13. Elbendary AM, Helal RM. Discriminating ability of spectral domain optical coherence tomography in different stages of glaucoma. Saudi J Ophthalmol. 2013;27:19–24.

    Article  Google Scholar 

  14. Kansal V, Armstrong JJ, Pintwala R, Hutnik C. Optical coherence tomography for glaucoma diagnosis: an evidence based meta-analysis. PLoS One. 2018;13(1):e0190621. https://doi.org/10.1371/journal.pone.0190621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. European Glaucoma Society. Glaucoma imaging. Savona: Dogma; 2017.

    Google Scholar 

  16. Rhee DJ. Glaucoma. Color atlas & synopsis of clinical ophthalmology. Chapter 9. 2nd ed: Wills Eye Institute. p. 136–49.

    Google Scholar 

  17. Chauhan BC, Nicolela MT, Artes PH. Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. Ophthalmology. 2009;116(11):2110–8. https://doi.org/10.1016/j.ophtha.2009.04.031. Epub 2009 Jun 4.

    Article  PubMed  Google Scholar 

  18. Field H, Ii A, Zeiss C, Ag M. Accuracy of GDx VCC, HRT I, and clinical assessment of stereoscopic optic nerve head photographs for diagnosing glaucoma. Br J Ophthalmol. 2007;91(3):313–8. https://doi.org/10.1136/bjo.2006.096586.

    Article  Google Scholar 

  19. Strouthidis N, Yang H, Reynaud J, et al. Comparison of clinical and spectral domain optical coherence tomography optic disc margin anatomy. Invest Ophthalmol Vis Sci. 2009;50(10):4709–18. https://doi.org/10.1167/iovs.09-3586.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Reis ASC, O’Leary N, Yang H, et al. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci. 2012;53(4):1852–60. https://doi.org/10.1167/iovs.11-9309.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chauhan BC, O’Leary N, AlMobarak FA, et al. Enhanced detection of open-angle Glaucoma with an anatomically accurate optical coherence tomography–derived neuroretinal rim parameter. Ophthalmology. 2013;120(3):535–43. https://doi.org/10.1016/j.ophtha.2012.09.055.

    Article  PubMed  Google Scholar 

  22. Advances in optic disc imaging. Presented by Francesco Oddone, 2016-04-01. http://www.mdata.gr/GlaucomaCongress2016/presentations/50 Last reach 2018-03-10.

  23. Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21. https://doi.org/10.1016/j.preteyeres.2012.08.003.

    Article  PubMed  Google Scholar 

  24. Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25.

    Article  CAS  Google Scholar 

  25. Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, Lederer D, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology. 2003;110(1):177–89.

    Article  Google Scholar 

  26. Leung CK, Chan WM, Yung WH, Ng AC, Woo J, Tsang MK, Tse RK. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005;112(3):391–400.

    Article  Google Scholar 

  27. Mori S, Hangai M, Sakamoto A, Yoshimura N. Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J Glaucoma. 2010;19:528–34. https://doi.org/10.1097/IJG.0b013e3181ca7acf.

    Article  PubMed  Google Scholar 

  28. Tan O, Chopra V, Lu AT-H, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116:2305–2314.e2. https://doi.org/10.1016/j.ophtha.2009.05.025.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, et al. Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2010;51:1446–52. https://doi.org/10.1167/iovs.09-4258.

    Article  PubMed  Google Scholar 

  30. Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4646–51. https://doi.org/10.1167/iovs.09-5053.

    Article  PubMed  Google Scholar 

  31. Garas A, Vargha P, Hollo G. Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma. Eye (Lond). 2011;25:57–65. https://doi.org/10.1038/eye.2010.139.

    Article  CAS  Google Scholar 

  32. Schulze A, Lamparter J, Pfeiffer N, Berisha F, Schmidtmann I, Hoffmann EM. Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2011;249:1039–45. https://doi.org/10.1007/s00417-010-1585-5.

    Article  PubMed  Google Scholar 

  33. Yang Z, Tatham AJ, Weinreb RN, Medeiros FA, Liu T, Zangwill LM. Diagnostic ability of macular ganglion cell inner plexiform layer measurements in glaucoma using swept source and spectral domain optical coherence tomography. PLoS One. 2015;10(5):e0125957. https://doi.org/10.1371/journal.pone.0125957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akvile Stoskuviene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stoskuviene, A. (2019). Evaluation of Glaucomatous Structural Changes. In: Januleviciene, I., Harris, A. (eds) Biophysical Properties in Glaucoma. Springer, Cham. https://doi.org/10.1007/978-3-319-98198-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98198-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98197-0

  • Online ISBN: 978-3-319-98198-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics