Skip to main content

The Systems Biology Approach

  • Chapter
  • First Online:
Myocardial Preservation

Abstract

Systems biology is an attempt to explain and integrate the increasing quantity and complexity of data of every type, including biological, in order to explain their interrelationships. Two models the simpler linear and that of the network are used. The latter can integrate more complex data and is more resistant to perturbations. The models apply to components of biological systems but also transportation economy and social organizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lusis AJ, Weiss JN. Cardiovascular networks: systems-based approaches to cardiovascular disease. Circulation. 2010;121:157–70.

    Article  Google Scholar 

  2. Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet. 2001;2:343–72.

    Article  CAS  Google Scholar 

  3. Department of Systems Biology Harvard Medical School. https://sysbio.med.Harvard.edu.

  4. Lusis AJ. A thematic review series: systems biology approaches to metabolic and cardiovascular disorders. J Lipid Res. 2006;47:1887–90.

    Article  CAS  Google Scholar 

  5. Mayr M. From data gathering to systems medicine. Cardiovasc Res. 2013;97:599–600.

    Article  CAS  Google Scholar 

  6. Arrell DK, Terzic A. Systems proteomics for translational network medicine. Circ Cardiovasc Genet. 2012;5:478.

    Article  Google Scholar 

  7. Chautard E, Thierry-Mieg N, Ricard-Blum S. Interaction networks: from protein functions to drug discovery. A review. Pathol Biol (Paris). 2009;57:324–33.

    Article  CAS  Google Scholar 

  8. Chuang HY, Hofree M, Ideker T. A decade of systems biology. Annu Rev Cell Dev Biol. 2010;26:721–44.

    Article  CAS  Google Scholar 

  9. Shreenivasaiah PK, Rho SH, Kim T, Kim DH. An overview of cardiac systems biology. J Mol Cell Cardiol. 2008;44:460–9.

    Article  CAS  Google Scholar 

  10. Hidalgo CA, Blumm N, Barabási AL, Christakis NA. A dynamic network approach for the study of human phenotypes. PLoS Comput Biol. 2009;5:e1000353.

    Article  Google Scholar 

  11. Brutsaert D. Heart Failure: Quo Vadis Lecture presented at Cardiovascular Biotechnology: From cell to man Biomedical Research Foundation Academy of Athens, 31 May – 1 June 2013.

    Google Scholar 

  12. Kalamatianos D. MCQs Systems Biology Approaches and Applications in Cardiovascular Diseases. Introduction to Translational Cardiovascular Research, 25 Jan 2013.

    Google Scholar 

  13. Weiss JN, Yang L, Qu Z. Network perspectives of cardiovascular metabolism. J Lipid Res. 2006;47:2355–66.

    Article  CAS  Google Scholar 

  14. Barabási AL, Bonabeau E. Scale-free networks. Sci Am. 2003;288:60–9.

    Article  Google Scholar 

  15. Barabási AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004;5:101–13.

    Article  Google Scholar 

  16. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL. Hierarchical organization of modularity in metabolic networks. Science. 2002;297:1551–5.

    Article  CAS  Google Scholar 

  17. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL. The large-scale organization of metabolic networks. Nature. 2000;407:651–4.

    Article  CAS  Google Scholar 

  18. Merton RK. The Matthew effect in science: the reward and communication systems of science are considered. Science. 1968;159(3810):56–63.

    Article  Google Scholar 

  19. Ramsey SA, Klemm SL, Zak DE, Kennedy KA, Thorsson V, Li B, et al. Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput Biol. 2008;4:e1000021.

    Article  Google Scholar 

  20. Skogsberg J, Lundström J, Kovacs A, Nilsson R, Noori P, Maleki S, et al. Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes. PLoS Genet. 2008;4:e1000036.

    Article  Google Scholar 

  21. Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, et al. Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci U S A. 2006;103:12741–6.

    Article  CAS  Google Scholar 

  22. Nadeau JH, Burrage LC, Restivo J, Pao YH, Churchill G, Hoit BD. Pleiotropy, homeostasis, and functional networks based on assays of cardiovascular traits in genetically randomized populations. Genome Res. 2003;13:2082–91.

    Article  CAS  Google Scholar 

  23. Machleder D, Ivandic B, Welch C, Castellani L, Reue K, Lusis AJ. Complex genetic control of HDL levels in mice in response to an atherogenic diet. Coordinate regulation of HDL levels and bile acid metabolism. J Clin Invest. 1997;99:1406–19.

    Article  CAS  Google Scholar 

  24. Lusis AJ, Attie AD, Reue K. Metabolic syndrome: from epidemiology to systems biology. Nat Rev Genet. 2008;9:819–30.

    Article  CAS  Google Scholar 

  25. Topol E. Textbook of cardiovascular medicine. 3rd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2007. Mentioned in Ref. [1].

    Google Scholar 

  26. Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol. 2007;3:124.

    Article  Google Scholar 

  27. Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks. Phys Rev E Stat Nonlinear Soft Matter Phys. 2001;63:066117.

    Article  CAS  Google Scholar 

  28. Eubank S, Guclu H, Kumar VS, Marathe MV, Srinivasan A, Toroczkai Z. Modelling disease outbreaks in realistic urban social networks. Nature. 2004;429:180–4.

    Article  CAS  Google Scholar 

  29. Ergün A, Lawrence CA, Kohanski MA, Brennan TA, Collins JJ. A network biology approach to prostate cancer. Mol Syst Biol. 2007;3:82.

    Article  Google Scholar 

  30. Lim J, Hao T, Shaw C, Patel AJ, Szabó G, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell. 2006;125:801–14.

    Article  CAS  Google Scholar 

  31. Lu X, Jain VV, Finn PW, Perkins DL. Hubs in biological interaction networks exhibit low changes in expression in experimental asthma. Mol Syst Biol. 2007;3:98.

    Article  Google Scholar 

  32. Nicholson JK. Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol. 2006;2:52.

    Article  Google Scholar 

  33. Kitano H. A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov. 2007;6:202–10.

    Article  CAS  Google Scholar 

  34. Butcher EC, Berg EL, Kunkel EJ. Systems biology in drug discovery. Nat Biotechnol. 2004;22:1253–9.

    Article  CAS  Google Scholar 

  35. Huan T, Zhang B, Wang Z, Joehanes R, Zhu J, Johnson AD, et al. A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler Thromb Vasc Biol. 2013;33:1427–34.

    Article  CAS  Google Scholar 

  36. West BJ, Geneston EL, Grigolini P. Maximizing information exchange between complex networks. Phys Rep. 2008;468:1–99.

    Article  Google Scholar 

  37. Geronikolou S, Pavlopoulou A, Albanopoulos K, Cokkinos D, Chrousos G. Kisspeptin and Stress induced obesidome. P052 IFSO 2018 eBook of Abstracts Springer 2018 p104. 8th Congress of the Int Fed for the surgery of obesity and metabolic disorders-eur chapter, Athens, May 17–19th 2018.

    Google Scholar 

  38. Kirschner MC. The meaning of systems biology. Cell. 2005;121:503–4.

    Article  CAS  Google Scholar 

  39. Noble D. Systems biology and the heart. Biosystems. 2006;83:75–80.

    Article  Google Scholar 

  40. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conducting and excitation in nerve. J Physiol. 1952;117:500–44.

    Article  CAS  Google Scholar 

  41. Noble D. Cardiac action and pacemaker potentials based on the Hodgkin Huxley equations. Nature. 1960;188:495–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis V. Cokkinos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cokkinos, D.V. (2019). The Systems Biology Approach. In: Cokkinos, D. (eds) Myocardial Preservation. Springer, Cham. https://doi.org/10.1007/978-3-319-98186-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98186-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98185-7

  • Online ISBN: 978-3-319-98186-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics