Skip to main content

Cell Therapy for Heart Disease: Ready for Prime Time or Lost in Translation?

  • Chapter
  • First Online:
Myocardial Preservation

Abstract

Over the past two decades, cell therapy has emerged as a potential therapeutic approach for various forms of heart disease. Several different cell types of adult progenitor cells have been tested clinically, including bone marrow-derived mononuclear cells, mesenchymal stromal cells (derived from the bone marrow or from adipose tissue), skeletal myoblasts, and heart-derived cells (c-kit+ cells and cardiosphere-derived cells). In addition, embryonic stem cells have also recently entered the arena of clinical testing. Overall, cell therapy for heart disease has established an excellent safety profile. However, results from clinical trials regarding its potential efficacy have been conflicting and perhaps (given the overwhelmingly positive results of preclinical studies) disappointing. Moving forward, the field is focusing on (a) optimization of delivery methods and development of tissue engineering approaches to boost cardiac retention and engraftment of administered cells, (b) elucidation of the indirect paracrine mechanism of action of administered cells, (c) development of highly standardized, carefully characterized allogeneic cellular products that could potentially facilitate widespread application of cell therapy, and (d) conduction of large, pivotal clinical trials using hard, clinically meaningful endpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malliaras K, Marbán E. Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull. 2011;98:161–85.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Malliaras K, Kreke M, Marbán E. The stuttering progress of cell therapy for heart disease. Clin Pharmacol Ther. 2011;90:532–41.

    Article  CAS  PubMed  Google Scholar 

  3. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132:661–80.

    Article  CAS  PubMed  Google Scholar 

  4. Chong JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510:273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nussbaum J, Minami E, Laflamme MA, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 2007;21:1345–57.

    Article  CAS  PubMed  Google Scholar 

  6. Menasche P, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36:2011–7.

    Article  PubMed  Google Scholar 

  7. Nazaraki G, Uosaki H, Teranishi M, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation. 2008;118:498–506.

    Article  Google Scholar 

  8. Nelson TJ, Martinez-Fernandez A, Yamada S, et al. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation. 2009;120:408–16.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shiba Y, et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature. 2016;538:388–91.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474:212–5.

    Article  CAS  PubMed  Google Scholar 

  11. Menasché P, Hagège A, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K, Vilquin JT, Marolleau JP. Autologous skeletal myoblast transplantation for cardiac insufficiency. First clinical case. Arch Mal Coeur Vaiss. 2001;94(3):180–2.

    PubMed  Google Scholar 

  12. Reinecke H, Poppa V, Murry CE. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol. 2002;34:241–9.

    Article  CAS  PubMed  Google Scholar 

  13. Abraham MR, Henrikson CA, Tung L, et al. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res. 2005;97:159–67.

    Article  CAS  PubMed  Google Scholar 

  14. Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, et al. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117:1189–200.

    Article  PubMed  Google Scholar 

  15. Povsic TJ, O’Connor CM, Henry T, et al. A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction. Am Heart J. 2011;162:654–62.

    Article  PubMed  Google Scholar 

  16. Duckers HJ, Houtgraaf J, Hehrlein C, Schofer J, Waltenberger J, Gershlick A, et al. Final results of a phase IIa, randomised, open-label trial to evaluate the percutaneous intramyocardial transplantation of autologous skeletal myoblasts in congestive heart failure patients: the SEISMIC trial. EuroIntervention. 2011;6:805–12.

    Article  PubMed  Google Scholar 

  17. Civin CI, Gore SD. Antigenic analysis of hematopoiesis: a review. J Hematother. 1993;2:137–44.

    Article  CAS  PubMed  Google Scholar 

  18. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  19. Crosby JR, Kaminski WE, Schatteman G, et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res. 2000;87:728–30.

    Article  CAS  PubMed  Google Scholar 

  20. Strauer BE, Brehm M, Zeus T, et al. Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenschr. 2001;126:932–8.

    Article  CAS  PubMed  Google Scholar 

  21. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.

    Article  CAS  PubMed  Google Scholar 

  22. Schächinger V, Erbs S, Elsässer A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210–21.

    Article  PubMed  Google Scholar 

  23. Huikuri HV, Kervinen K, Niemelä M, et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J. 2008;29:2723–32.

    Article  PubMed  Google Scholar 

  24. Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199–209.

    Article  CAS  PubMed  Google Scholar 

  25. Hirsch A, Nijveldt R, van der Vleuten PA, et al. Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial. Eur Heart J. 2010;32:1736–47. https://doi.org/10.1093/eurheartj/ehq449.

    Article  PubMed  Google Scholar 

  26. Wöhrle J, Merkle N, Mailänder V, et al. Results of intracoronary stem cell therapy after acute myocardial infarction. Am J Cardiol. 2010;105:804–12.

    Article  PubMed  CAS  Google Scholar 

  27. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Chugh A, Yang PC, Zhao DXM, Ellis SG, Forder JR, Perin EC, Penn MS, Hatzopoulos AK, Chambers JC, Baran KW, Raveendran G, Gee AP, Taylor DA, Moyé L, Ebert RF, Simari RD. TIME trial: effect of timing of stem cell delivery following ST-elevation myocardial infarction on the recovery of global and regional left ventricular function: final 2-year analysis. Circ Res. 2018;122(3):479–88.

    Article  CAS  PubMed  Google Scholar 

  28. Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011;306(19):2110–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sürder D, Manka R, Lo Cicero V, et al. Intracoronary injection of bone marrow-derived mononuclear cells early or late after acute myocardial infarction: effects on global left ventricular function. Circulation. 2013;127(19):1968–79.

    Article  PubMed  Google Scholar 

  30. Mathur A, Arnold R, Assmus B, Bartunek J, et al. The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: rationale and design of the BAMI trial. Eur J Heart Fail. 2017;19(11):1545–50.

    Article  CAS  PubMed  Google Scholar 

  31. Dimmeler S, Zeiher AM. Cell therapy of acute myocardial infarction: open questions. Cardiology. 2009;113:155–60.

    Article  PubMed  Google Scholar 

  32. Losordo DW, Henry TD, Davidson C, Sup Lee J, Costa MA, Bass T, et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res. 2011;109:428–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vrtovec B, Poglajen G, Lezaic L, Sever M, Domanovic D, Cernelc P, et al. Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circ Res. 2013;112:165–73.

    Article  CAS  PubMed  Google Scholar 

  34. Pijnappels DA, Schalij MJ, Ramkisoensing AA, van Tuyn J, de Vries AA, van der Laarse A, et al. Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res. 2008;103:167–76.

    Article  CAS  PubMed  Google Scholar 

  35. Heldman AW, Difede DL, Fishman JE, Zambrano JP, Trachtenberg BH, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA. 2013;311:62–73. https://doi.org/10.1001/jama.2013.282909.

    Article  CAS  Google Scholar 

  36. Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C, et al. Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol. 2010;56:721–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol. 2013;61:2329–38.

    Article  PubMed  Google Scholar 

  38. Bartunek J, Terzic A, Davison BA, et al. Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur Heart J. 2017;38(9):648–60.

    CAS  PubMed  Google Scholar 

  39. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32(3):252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308:2369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hare JM, Difede DL, Rieger AC, Florea V, Landin AM, El-Khorazaty J, et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial. J Am Coll Cardiol. 2017;69(5):526–37.

    Article  PubMed  Google Scholar 

  42. Psaltis PJ, et al. Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol. 2010;223:530–40.

    CAS  PubMed  Google Scholar 

  43. Perin EC, et al. A phase II dose-escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic heart failure. Circ Res. 2015;117:576–84.

    Article  CAS  PubMed  Google Scholar 

  44. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473(7347):326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Malliaras K, Terrovitis J. Cardiomyocyte proliferation vs progenitor cells in myocardial regeneration: the debate continues. Glob Cardiol Sci Pract. 2013;2013(3):303–15.

    PubMed  PubMed Central  Google Scholar 

  47. Malliaras K, Vakrou S, Kapelios CJ, Nanas JN. Innate heart regeneration: endogenous cellular sources and exogenous therapeutic amplification. Expert Opin Biol Ther. 2016;16(11):1341–52.

    Article  CAS  PubMed  Google Scholar 

  48. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are pluripotent and support myocardial regeneration. Cell. 2003;114:763–6.

    Article  CAS  PubMed  Google Scholar 

  49. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A. 2003;100:12313–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004;265:262–75.

    Article  CAS  PubMed  Google Scholar 

  51. Ott HC, Matthiesen TS, Brechtken J, Grindle S, Goh SK, Nelson W, et al. The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells. Nat Clin Pract Cardiovasc Med. 2007;4(Suppl 1):S27–39.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008;454:109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911–21.

    Article  CAS  PubMed  Google Scholar 

  54. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115:896–908.

    Article  PubMed  CAS  Google Scholar 

  55. Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–57.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore B, Kajstura J, et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation. 2012;126(11 Suppl 1):554–64.

    Google Scholar 

  57. Sanz-Ruiz R, Casado Plasencia A, Borlado LR, et al. Rationale and design of a clinical trial to evaluate the safety and efficacy of intracoronary infusion of allogeneic human cardiac stem cells in patients with acute myocardial infarction and left ventricular dysfunction: the randomized multicenter double-blind controlled CAREMI trial (cardiac stem cells in patients with acute myocardial infarction). Circ Res. 2017;121:71–80.

    Article  CAS  PubMed  Google Scholar 

  58. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379:895–904.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence for therapeutic regeneration in the final 1-year results of the CADUCEUS trial. J Am Coll Cardiol. 2014;63:110–22.

    Article  PubMed  Google Scholar 

  60. Ishigami S, Ohtsuki S, Tarui S, et al. Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome: the TICAP prospective phase 1 controlled trial. Circ Res. 2017;116:653–64.

    Article  CAS  Google Scholar 

  61. Tarui S, Ishigami S, Ousaka D, Kasahara S, Ohtsuki S, Sano S, Oh H. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: three-year follow-up of the Transcoronary Infusion of Cardiac Progenitor Cells in Patients With Single-Ventricle Physiology (TICAP) trial. J Thorac Cardiovasc Surg. 2015;150:1198–1207, 1208.e1. https://doi.org/10.1016/j.jtcvs.2015.06.076.

    Article  Google Scholar 

  62. Ishigami S, Ohtsuki S, Eitoku T, et al. Intracoronary cardiac progenitor cells in single ventricle physiology: the PERSEUS (cardiac progenitor cell infusion to treat Univentricular heart disease) randomized phase 2 trial. Circ Res. 2017;120:1162–73.

    Article  CAS  PubMed  Google Scholar 

  63. Malliaras K, Li TS, Luthringer D, et al. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation. 2012;125:100–12.

    Article  CAS  PubMed  Google Scholar 

  64. Lauden L, Boukouaci W, Borlado LR, et al. Allogenicity of human cardiac stem/progenitor cells orchestrated by programmed death ligand 1. Circ Res. 2013;112:451–64.

    Article  CAS  PubMed  Google Scholar 

  65. Kapelios CJ, Nanas JN, Malliaras K. Allogeneic cardiosphere-derived cells for myocardial regeneration: current progress and recent results. Futur Cardiol. 2016;12(1):87–100.

    Article  CAS  Google Scholar 

  66. Malliaras K, Smith RR, Kanazawa H, et al. Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction. Circulation. 2013;128:2764–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chakravarty T, Makkar R, Henry T, et al. TCT-820 multivessel intracoronary infusion of allogeneic cardiosphere derived cells in dilated cardiomyopathy: long term outcomes of the Dilated Cardiomyopathy Intervention with Allogeneic Myocardially-Regenerative Cells (DYNAMIC Trial). J Am Coll Cardiol. 2016;68:B332 (abstract).

    Article  Google Scholar 

  68. http://www.abstractsonline.com/pp8/#!/4412/presentation/52588.

  69. Chakravarty T, Makkar RR, Ascheim DD, Traverse JH, Schatz R, Demaria A, Francis GS, Povsic TJ, Smith RR, Lima JA, Pogoda JM, Marbán L, Henry TD. ALLogeneic heart STem cells to achieve myocardial regeneration (ALLSTAR) trial: rationale and design. Cell Transplant. 2017;26(2):205–14.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Houtgraaf JH, den Dekker WK, van Dalen BM, Springeling T, de Jong R, van Geuns RJ, et al. First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2012;59:539–40.

    Article  PubMed  Google Scholar 

  71. Perin EC, Sanz-Ruiz R, Sánchez PL, Lasso J, Pérez-Cano R, Alonso-Farto JC, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE Trial. Am Heart J. 2014; 168:88–95.e2.

    Article  PubMed  CAS  Google Scholar 

  72. Qayyum AA, Mathiasen AB, Mygind ND, Kühl JT, Jørgensen E, Helqvist S, Elberg JJ, Kofoed KF, Vejlstrup NG, Fischer-Nielsen A, Haack-Sørensen M, Ekblond A, Kastrup J. Adipose-derived stromal cells for treatment of patients with chronic ischemic heart disease (MyStromalCell trial): a randomized placebo-controlled study. Stem Cells Int. 2017;2017:5237063.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fisher SA, Doree C, Taggart DP, Mathur A, Martin-Rendon E. Cell therapy for heart disease: trial sequential analyses of two Cochrane reviews. Clin Pharmacol Ther. 2016;100:88–101.

    Article  CAS  PubMed  Google Scholar 

  74. Pokushalov E, Romanov A, Chernyavsky A, Larionov P, Terekhov I, Artyomenko S, Poveshenko O, Kliver E, Shirokova N, Karaskov A, Dib N. Efficiency of intramyocardial injections of autologous bone marrow mononuclear cells in patients with ischemic heart failure: a randomized study. J Cardiovasc Transl Res. 2010;3(2):160–8.

    Article  PubMed  Google Scholar 

  75. Malliaras K, Marbán E. Moving beyond surrogate endpoints in cell therapy trials for heart disease. Stem Cells Transl Med. 2014;3(1):2–6.

    Article  PubMed  Google Scholar 

  76. Losordo DW, Schatz RA, White CJ, Udelson JA, Veereshwarayya V, Durgin M, et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina. A phase I/IIa double-blind, randomized Controlled Trial. Circulation. 2007;115:3165–72.

    Article  PubMed  Google Scholar 

  77. Tse HF, Thambar S, Kwong YL, Rowlings P, Bellamy G, McCrohon J, et al. Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary diseases (PROTECT-CAD trial). Eur Heart J. 2007;28:2998–3005.

    Article  PubMed  Google Scholar 

  78. van Ramshorst J, Bax JJ, Beeres SL, Dibbets-Schneider P, Roes SD, Stokkel MP, et al. Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA. 2009;301:1997–2004.

    Article  PubMed  Google Scholar 

  79. Wang S, Cui J, Peng W, Lu M. Intracoronary autologous CD34+ stem cell therapy for intractable angina. Cardiology. 2010;117:140–7.

    Article  PubMed  Google Scholar 

  80. Povsic TJ, Henry TD, Traverse JH, et al. The RENEW trial: efficacy and safety of Intramyocardial autologous CD34(+) cell Administration in Patients with Refractory Angina. JACC Cardiovasc Interv. 2016;9(15):1576–85.

    Article  PubMed  Google Scholar 

  81. De Angelis A, Piegari E, Cappetta D, Marino L, Filippelli A, Berrino L, et al. Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation. 2010;121:276–92.

    Article  PubMed  CAS  Google Scholar 

  82. Van Linthout S, Savvatis K, Miteva K, Peng J, Ringe J, Warstat K, et al. Mesenchymal stem cells improve murine acute coxsackievirus B3-induced myocarditis. Eur Heart J. 2011;32:2168–78.

    Article  PubMed  CAS  Google Scholar 

  83. Tseng CC, Ramjankhan FZ, de Jonge N, Chamuleau SA. Advanced strategies for end-stage heart failure: combining regenerative approaches with LVAD, a new horizon? Front Surg. 2015;2:10.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ascheim DD, Gelijns AC, Goldstein D, et al. Mesenchymal precursor cells as adjunctive therapy in recipients of contemporary left ventricular assist devices. Circulation. 2014;129(22):2287–96. https://doi.org/10.1161/CIRCULATIONAHA.113.007412. Epub 2014 Mar 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Terrovitis JV, Smith RR, Marbán E. Assessment and optimization of cell engraftment after transplantation into the heart. Circ Res. 2010;106(3):479–94. https://doi.org/10.1161/CIRCRESAHA.109.208991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ. Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology. Circ Res. 2016;118:95–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kanazawa H, Tseliou E, Malliaras K, et al. Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction. Circ Heart Fail. 2015;8(2):322–32.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20:661–9.

    Article  CAS  PubMed  Google Scholar 

  89. Mirotsou M, Zhang Z, Deb A, Zhang L, Gnecchi M, Noiseux N, et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A. 2007;104:1643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, Nguyen AL, Kwon CW, Le AD. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells. 2010;28:1856–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol. 2009;37:1445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dayan V, Yannarelli G, Billia F, Filomeno P, Wang XH, Davies JE, Keating A. Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol. 2011;106:1299–310.

    Article  CAS  PubMed  Google Scholar 

  93. Weil BR, Suzuki G, Leiker MM, Fallavollita JA, Canty JM. Comparative efficacy of intracoronary allogeneic mesenchymal stem cells and Cardiosphere-derived cells in swine with hibernating myocardium. Circ Res. 2015;117:634–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Malliaras K, Zhang Y, Seinfeld J, Galang G, Tseliou E, Cheng K, et al. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med. 2013;5:191–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xie Y, Ibrahim A, Cheng K, Wu Z, Liang W, Malliaras K, Sun B, Liu W, Shen D, Cheol Cho H, Li T, Lu L, Lu G, Marbán E. Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells. Stem Cells. 2014;32(9):2397–406.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ibrahim AG, Cheng K, Marban E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2014;2:606–19.

    Article  CAS  Google Scholar 

  97. Ibrahim A, Marban E. Exosomes: fundamental biology and roles in cardiovascular physiology. Annu Rev Physiol. 2016;78:67–83.

    Article  CAS  PubMed  Google Scholar 

  98. De Jong OG, Van Balkom BW, Schiffelers RM, Bouten CV, Verhaar MC. Extracellular vesicles: potential roles in regenerative medicine. Front Immunol. 2014;5:608.

    PubMed  PubMed Central  Google Scholar 

  99. Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23:812–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Loffredo FS, Steinhauser ML, Gannon J, Lee RT. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell. 2011;8(4):389–98. https://doi.org/10.1016/j.stem.2011.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Malliaras K, Ibrahim A, Tseliou E, et al. Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction. EMBO Mol Med. 2014;6:760–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tseliou E, de Couto G, Terrovitis J, Sun B, Weixin L, Marbán L, Marbán E. Angiogenesis, cardiomyocyte proliferation and anti-fibrotic effects underlie structural preservation post-infarction by intramyocardially-injected cardiospheres. PLoS One. 2014;9(2):e88590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Tseliou E, Reich H, de Couto G, Terrovitis J, Sun B, Liu W, Marbán E. Cardiospheres reverse adverse remodeling in chronic rat myocardial infarction: roles of soluble endoglin and Tgf-β signaling. Basic Res Cardiol. 2014;109(6):443.

    Article  PubMed  CAS  Google Scholar 

  104. Xu X, Xu Z, Xu Y, Cui G. Effects of mesenchymal stem cell transplantation on extracellular matrix after myocardial infarction in rats. Coron Artery Dis. 2005;16:245–55.

    Article  PubMed  Google Scholar 

  105. Nguyen BK, Maltais S, Perrault LP, et al. Improved function and myocardial repair of infarcted heart by intracoronary injection of mesenchymal stem cell-derived growth factors. J Cardiovasc Transl Res. 2010;3:547–58.

    Article  PubMed  Google Scholar 

  106. Gnecchi M, He H, Melo LG, Noiseaux N, Morello F, de Boer RA, et al. Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells. 2009;27:971–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Freestone NS, Ribaric S, Mason WT. The effect of insulin-like growth factor-1 on adult rat cardiac contractility. Mol Cell Biochem. 1996;163–164:223–229.

    Article  CAS  PubMed  Google Scholar 

  108. Maxeiner H1, Mufti S, Krehbiehl N, Dülfer F, Helmig S, Schneider J, Böning A, Matejec R, Weigand MA, Schlüter KD, Wenzel S. Interleukin-6 contributes to the paracrine effects of cardiospheres cultured from human, murine and rat hearts. J Cell Physiol. 2014;229(11):1681–9. doi: https://doi.org/10.1002/jcp.24613.

    Article  CAS  PubMed  Google Scholar 

  109. Wu R, Hu X, Wang J. Concise review: optimized strategies for stem cell-based therapy in myocardial repair: clinical translatability and potential limitation. Stem Cells. 2018;36(4):482–500. https://doi.org/10.1002/stem.2778. Epub 2018 Jan 26.

    Article  PubMed  Google Scholar 

  110. Danieli P, Malpasso G, Ciuffreda MC, et al. Conditioned medium from human amniotic mesenchymal stromal cells limits infarct size and enhances angiogenesis. Stem Cells Transl Med. 2015;4:448–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hynes B, Kumar AH, O’sullivan J, et al. Potent endothelial progenitor cell conditioned media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1. Eur Heart J. 2013;34:782–9.

    Article  CAS  PubMed  Google Scholar 

  112. Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A, et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res. 2010;106:971–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li Q, Guo Y, Ou Q, et al. Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models. Basic Res Cardiol. 2011;106:849–64.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tseliou E, Kanazawa H, Dawkins J, et al. Widespread myocardial delivery of heart-derived stem cells by nonocclusive triple-vessel intracoronary infusion in porcine ischemic cardiomyopathy: superior attenuation of adverse remodeling documented by magnetic resonance imaging and histology. PLoS One. 2016;11:e0144523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Johnston PV, Sasano T, Mills K, Evers R, Lee ST, Smith RR, et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation. 2009;120:1075–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Freyman T, Polin G, Osman H, et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J. 2006;27:1114–22.

    Article  PubMed  Google Scholar 

  117. Abdelwahid E, Kalvelyte A, Stulpinas A, de Carvalho KA, Guarita-Souza LC, Foldes G. Stem cell death and survival in heart regeneration and repair. Apoptosis. 2016;21:252–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9:1195–201.

    Article  CAS  PubMed  Google Scholar 

  119. Siddiqi S, Sussman MA. Cell and gene therapy for severe heart failure patients: the time and place for Pim-1 kinase. Expert Rev Cardiovasc Ther. 2013;11:949–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol. 2005;46:1339–1350.

    Google Scholar 

  121. Yu SP, Wei Z, Wei L. Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res. 2013;4(1):76–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res. 2009;104:1209–1216.

    Google Scholar 

  123. Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for therapeutic neovascularization. Lab Invest. 2003;83:65–73.

    Article  PubMed  Google Scholar 

  124. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells. 2008;26:2173–2182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Assmus B, Walter DH, Seeger FH, Leistner DM, Steiner J, Ziegler I, Lutz A, Khaled W, Klotsche J, Tonn T, Dimmeler S, Zeiher AM. Effect of shock wave-facilitated intracoronary cell therapy on LVEF in patients with chronic heart failure: the CELLWAVE randomized clinical trial. JAMA. 2013;309(15):1622–31.

    Article  CAS  PubMed  Google Scholar 

  126. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation. 2003;107(9):1322–8.

    Article  CAS  PubMed  Google Scholar 

  127. Zen K, Okigaki M, Hosokawa Y, Adachi Y, Nozawa Y, Takamiya M, Tatsumi T, Urao N, Tateishi K, Takahashi T, Matsubara H. Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. J Mol Cell Cardiol. 2006;40(6):799–809. Epub 2006 May 5

    Article  CAS  PubMed  Google Scholar 

  128. Ghanem A, Steingen C, Brenig F, Funcke F, Bai ZY, Hall C, Chin CT, Nickenig G, Bloch W, Tiemann K. Focused ultrasound-induced stimulation of microbubbles augments site-targeted engraftment of mesenchymal stem cells after acute myocardial infarction. J Mol Cell Cardiol. 2009;47(3):411–8.

    Article  CAS  PubMed  Google Scholar 

  129. Cheng K, Malliaras K, Li TS, Sun B, Houde C, Galang G, et al. Magnetic enhancement of cell retention, engraftment, and functional benefit after intracoronary delivery of cardiac-derived stem cells in a rat model of ischemia/reperfusion. Cell Transplant. 2012;21:1121–35.

    Article  PubMed  Google Scholar 

  130. Zhao TC, Tseng A, Yano N, Tseng Y, Davol PA, Lee RJ, Lum LG, Padbury JF. Targeting human CD34+ hematopoietic stem cells with anti-CD45 x anti-myosin light-chain bispecific antibody preserves cardiac function in myocardial infarction. J Appl Physiol (1985). 2008;104(6):1793–800. https://doi.org/10.1152/japplphysiol.01109.2007. Epub 2008 Feb 21.

    Article  Google Scholar 

  131. Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D. Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells Cloning. 2015;8:81–101.

    PubMed  PubMed Central  Google Scholar 

  132. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A. 2004;101:18129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Miyagawa S, Sawa Y, Sakakida S, Taketani S, Kondoh H, Memon IA, et al. Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium. Transplantation. 2005;80:1586–95.

    Article  CAS  PubMed  Google Scholar 

  134. Miyagawa S, Domae K, Yoshikawa Y, Fukushima S, Nakamura T, Saito A, et al. Phase I clinical trial of autologous stem cell—sheet transplantation therapy for treating cardiomyopathy. J Am Heart Assoc. 2017;6:e003918.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    Article  CAS  PubMed  Google Scholar 

  136. Madonna R, Van Laake LW, Davidson SM, Engel FB, Hausenloy DJ, Lecour S, et al. Position paper of the European Society of Cardiology Working Group Cellular Biology of the heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J. 2016;37:1789–98.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lader J, Stachel M, Bu L. Cardiac stem cells for myocardial regeneration: promising but not ready for prime time. Curr Opin Biotechnol. 2017;47:30–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Duelen R, Sampaolesi M. Stem cell Technology in Cardiac Regeneration: a pluripotent stem cell promise. EBioMedicine. 2017;16:30–40. https://doi.org/10.1016/j.ebiom.2017.01.029. Epub 2017 Jan 27

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malliaras, K., Cokkinos, D.V. (2019). Cell Therapy for Heart Disease: Ready for Prime Time or Lost in Translation?. In: Cokkinos, D. (eds) Myocardial Preservation. Springer, Cham. https://doi.org/10.1007/978-3-319-98186-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98186-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98185-7

  • Online ISBN: 978-3-319-98186-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics