Skip to main content

Using Peptidomics to Identify Extracellular Matrix-Derived Peptides as Novel Therapeutics for Cardiac Disease

  • Chapter
  • First Online:
Fibrosis in Disease

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 909 Accesses

Abstract

Peptidomics involves the analysis of endogenous peptides from biological samples; this analysis can be used both to catalog peptides present at a time point and to compare peptide levels across samples. During cardiac injury, there is extensive extracellular matrix (ECM) protein turnover as ECM is degraded to clear damaged/necrotic cells and de novo ECM is synthesized during myocardial regeneration and remodeling. These processes generate numerous endogenous peptides that are often biologically active and can be used as biomarkers, cellular modulators, and even as tools to assess response to therapy. The analysis of the cardiac or systemic ECM peptidome is important for a complete understanding of myocardial remodeling and is an exciting avenue to identify novel mechanisms to limit adverse cardiac remodeling and progression to heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dallas DC, Guerrero A, Khaldi N, Borghese R, Bhandari A, Underwood MA, Lebrilla CB, German JB, Barile D. A peptidomic analysis of human milk digestion in the infant stomach reveals protein-specific degradation patterns. J Nutr. 2014;144(6):815–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boutrou R, Gaudichon C, Dupont D, Jardin J, Airinei G, Marsset-Baglieri A, Benamouzig R, Tome D, Leonil J. Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. Am J Clin Nutr. 2013;97(6):1314–23.

    Article  CAS  PubMed  Google Scholar 

  3. Bouzerzour K, Morgan F, Cuinet I, Bonhomme C, Jardin J, Le Huerou-Luron I, Dupont D. In vivo digestion of infant formula in piglets: protein digestion kinetics and release of bioactive peptides. Br J Nutr. 2012;108(12):2105–14.

    Article  CAS  PubMed  Google Scholar 

  4. Sarethy IP. Plant peptides: bioactivity, opportunities and challenges. Protein Pept Lett. 2017;24(2):102–8.

    Article  CAS  PubMed  Google Scholar 

  5. Iloro I, Gonzalez E, Gutierrez-de Juan V, Mato JM, Falcon-Perez JM, Elortza F. Non-invasive detection of drug toxicity in rats by solid-phase extraction and MALDI-TOF analysis of urine samples. Anal Bioanal Chem. 2013;405(7):2311–20.

    Article  CAS  PubMed  Google Scholar 

  6. Fredolini C, Meani F, Luchini A, Zhou W, Russo P, Ross M, Patanarut A, Tamburro D, Gambara G, Ornstein D, Odicino F, Ragnoli M, Ravaggi A, Novelli F, Collura D, D'Urso L, Muto G, Belluco C, Pecorelli S, Liotta L, Petricoin EF 3rd. Investigation of the ovarian and prostate cancer peptidome for candidate early detection markers using a novel nanoparticle biomarker capture technology. AAPS J. 2010;12(4):504–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zurbig P, Dihazi H, Metzger J, Thongboonkerd V, Vlahou A. Urine proteomics in kidney and urogenital diseases: moving towards clinical applications. Proteomics Clin Appl. 2011;5(5–6):256–68.

    Article  PubMed  CAS  Google Scholar 

  8. Ling XB, Sigdel TK, Lau K, Ying L, Lau I, Schilling J, Sarwal MM. Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection. J Am Soc Nephrol. 2010;21(4):646–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zimmerli LU, Schiffer E, Zurbig P, Good DM, Kellmann M, Mouls L, Pitt AR, Coon JJ, Schmieder RE, Peter KH, Mischak H, Kolch W, Delles C, Dominiczak AF. Urinary proteomic biomarkers in coronary artery disease. Mol Cell Proteomics. 2008;7(2):290–8.

    Article  CAS  PubMed  Google Scholar 

  10. Fricker LD, Lim J, Pan H, Che FY. Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom Rev. 2006;25(2):327–44.

    Article  CAS  PubMed  Google Scholar 

  11. Clynen E, De Loof A, Schoofs L. The use of peptidomics in endocrine research. Gen Comp Endocrinol. 2003;132(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  12. Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J, Levin JZ, Karger AD, Budnik BA, Rinn JL, Saghatelian A. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat Chem Biol. 2013;9(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  13. Galindo MI, Pueyo JI, Fouix S, Bishop SA, Couso JP. Peptides encoded by short ORFs control development and define a new eukaryotic gene family. PLoS Biol. 2007;5(5):e106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Robinson MM, Dasari S, Karakelides H, Bergen HR 3rd, Nair KS. Release of skeletal muscle peptide fragments identifies individual proteins degraded during insulin deprivation in type 1 diabetic humans and mice. Am J Physiol Endocrinol Metab. 2016;311(3):E628–37.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berezniuk I, Sironi J, Callaway MB, Castro LM, Hirata IY, Ferro ES, Fricker LD. CCP1/Nna1 functions in protein turnover in mouse brain: implications for cell death in Purkinje cell degeneration mice. FASEB J. 2010;24(6):1813–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carleo A, Chorostowska-Wynimko J, Koeck T, Mischak H, Czajkowska-Malinowska M, Rozy A, Welte T, Janciauskiene S. Does urinary peptide content differ between COPD patients with and without inherited alpha-1 antitrypsin deficiency? Int J Chron Obstruct Pulmon Dis. 2017;12:829–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cafe-Mendes CC, Ferro ES, Torrao AS, Crunfli F, Rioli V, Schmitt A, Falkai P, Britto LR, Turck CW, Martins-de-Souza D. Peptidomic analysis of the anterior temporal lobe and corpus callosum from schizophrenia patients. J Proteome. 2017;151:97–105.

    Article  CAS  Google Scholar 

  18. Verhaert PD, Pinkse MW, Prieto‐Conaway MC, and Kellmann M. A short history of insect (Neuro)peptidomics—a personal story of the birth and youth of an excellent model for studying peptidome biology. In Peptidomics (eds M. Soloviev, C. Shaw and P. Andrén). Wiley: New Jersey. 2007:25–54.

    Google Scholar 

  19. Willey JM, van der Donk WA. Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol. 2007;61:477–501.

    Article  CAS  PubMed  Google Scholar 

  20. Challis GL, Naismith JH. Structural aspects of non-ribosomal peptide biosynthesis. Curr Opin Struct Biol. 2004;14(6):748–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Y, Li Y, Chen T, Kuklina AS, Bernard P, Esteva FJ, Shen H, Ferrari M, Hu Y. Circulating proteolytic products of carboxypeptidase N for early detection of breast Cancer. Clin Chem. 2014;60(1):233–42.

    Article  CAS  PubMed  Google Scholar 

  22. Nah D-Y, Rhee M-Y. The inflammatory response and cardiac repair after myocardial infarction. Korean Circ J. 2009;39(10):393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jourdan-LeSaux C, Zhang J, Lindsey ML. Extracellular matrix roles during cardiac repair. Life Sci. 2010;87(13–14):391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lindsey ML, Hall ME, Harmancey R, Ma Y. Adapting extracellular matrix proteomics for clinical studies on cardiac remodeling post-myocardial infarction. Clin Proteomics. 2016;13(1):19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dallas DC, Guerrero A, Parker EA, Robinson RC, Gan J, German JB, Barile D, Lebrilla CB. Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics. 2015;15(0):1026–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lindsey ML, Iyer RP, Zamilpa R, Yabluchanskiy A, DeLeon-Pennell KY, Hall ME, Kaplan A, Zouein FA, Bratton D, Flynn ER, Cannon PL, Tian Y, Jin YF, Lange RA, Tokmina-Roszyk D, Fields GB, de Castro Brás LE, Novel Collagen A. Matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J Am Coll Cardiol. 2015;66(12):1364–74.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mihardja SS, Gao D, Sievers RE, Fang Q, Feng J, Wang J, Vanbrocklin HF, Larrick JW, Huang M, Dae M, Lee RJ. Targeted in vivo extracellular matrix formation promotes neovascularization in a rodent model of myocardial infarction. PLoS One. 2010;5(4):e10384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Koskimaki JE, Karagiannis ED, Rosca EV, Vesuna F, Winnard PT, Raman V, Bhujwalla ZM, Popel AS. Peptides derived from type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins inhibit neovascularization and suppress tumor growth in MDA-MB-231 breast cancer xenografts. Neoplasia (New York, NY). 2009;11(12):1285–91.

    Article  CAS  Google Scholar 

  29. Yamamura K, Kibbey MC, Jun SH, Kleinman HK. Effect of Matrigel and laminin peptide YIGSR on tumor growth and metastasis. Semin Cancer Biol. 1993;4(4):259–65.

    CAS  PubMed  Google Scholar 

  30. Yi M, Ruoslahti E. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci USA. 2001;98(2):620–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zamilpa R, Lindsey ML. Extracellular matrix turnover and signaling during cardiac remodeling following MI: causes and consequences. J Mol Cell Cardiol. 2010;48(3):558–63.

    Article  CAS  PubMed  Google Scholar 

  32. Francis Stuart SD, De Jesus NM, Lindsey ML, Ripplinger CM. The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J Mol Cell Cardiol. 2016;91:114–22.

    Article  CAS  PubMed  Google Scholar 

  33. De Jesus NM, Wang L, Herren AW, Wang J, Shenasa F, Bers DM, Lindsey ML, Ripplinger CM. Atherosclerosis exacerbates arrhythmia following myocardial infarction: role of myocardial inflammation. Heart Rhythm. 2015;12(1):169–78.

    Article  PubMed  Google Scholar 

  34. Soloviev M, Shaw C, and Andrén P. Peptidomics: methods and applications. Wiley: New Jersey. 2007.

    Google Scholar 

  35. Finoulst I, Pinkse M, Van Dongen W, Verhaert P. Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices. J Biomed Biotechnol. 2011;2011:14.

    Article  CAS  Google Scholar 

  36. Brange J, Langkjoer L. Insulin structure and stability. Pharm Biotechnol. 1993;5:315–50.

    Article  CAS  PubMed  Google Scholar 

  37. Sisodia SS, Price DL. Role of the beta-amyloid protein in Alzheimer’s disease. FASEB J. 1995;9(5):366–70.

    Article  CAS  PubMed  Google Scholar 

  38. Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD. A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol. 2009;39(11):792–800.

    Article  CAS  PubMed  Google Scholar 

  39. Lindsey ML, Gomes AV, Smith SV, de Castro Brás LE. How to design a cardiovascular proteomics experiment. In: Agnetti G, Lindsey ML, Foster DB, editors. Manual of cardiovascular proteomics. Cham: Springer International Publishing; 2016. p. 33–57.

    Chapter  Google Scholar 

  40. Schrader M, Schulz-Knappe P, Fricker LD. Historical perspective of peptidomics. EuPA Open Proteom. 2014;3:171–82.

    Article  CAS  Google Scholar 

  41. Hu L, Ye M, Zou H. Recent advances in mass spectrometry-based peptidome analysis. Expert Rev Proteomics. 2009;6(4):433–47.

    Article  CAS  PubMed  Google Scholar 

  42. Sigdel TK, Nicora CD, Hsieh S-C, Dai H, Qian W-J, Camp DG, Sarwal MM. Optimization for peptide sample preparation for urine peptidomics. Clin Proteomics. 2014;11(1):7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;785(2):263–75.

    Article  CAS  PubMed  Google Scholar 

  44. Fukao Y, Yoshida M, Kurata R, Kobayashi M, Nakanishi M, Fujiwara M, Nakajima K, Ferjani A. Peptide separation methodologies for in-depth proteomics in Arabidopsis. Plant Cell Physiol. 2013;54(5):808–15.

    Article  CAS  PubMed  Google Scholar 

  45. Xu Y, Cao Q, Svec F, Frechet JM. Porous polymer monolithic column with surface-bound gold nanoparticles for the capture and separation of cysteine-containing peptides. Anal Chem. 2010;82(8):3352–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu T, Qian WJ, Strittmatter EF, Camp DG 2nd, Anderson GA, Thrall BD, Smith RD. High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology. Anal Chem. 2004;76(18):5345–53.

    Article  CAS  PubMed  Google Scholar 

  47. Grunert T, Pock K, Buchacher A, Allmaier G. Selective solid-phase isolation of methionine-containing peptides and subsequent matrix-assisted laser desorption/ionisation mass spectrometric detection of methionine- and of methionine-sulfoxide-containing peptides. Rapid Commun Mass Spectrom. 2003;17(16):1815–24.

    Article  CAS  PubMed  Google Scholar 

  48. Foettinger A, Leitner A, Lindner W. Selective enrichment of tryptophan-containing peptides from protein digests employing a reversible derivatization with malondialdehyde and solid-phase capture on hydrazide beads. J Proteome Res. 2007;6(9):3827–34.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Zhao Q, Liang Z, Yang K, Sun L, Zhang L, Zhang Y. Synthesis of adenosine functionalized metal immobilized magnetic nanoparticles for highly selective and sensitive enrichment of phosphopeptides. Chem Commun (Camb). 2012;48(50):6274–6.

    Article  CAS  Google Scholar 

  50. Thingholm TE, Jorgensen TJ, Jensen ON, Larsen MR. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc. 2006;1(4):1929–35.

    Article  CAS  PubMed  Google Scholar 

  51. Li QR, Ning ZB, Tang JS, Nie S, Zeng R. Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J Proteome Res. 2009;8(11):5375–81.

    Article  CAS  PubMed  Google Scholar 

  52. Batalha IL, Roque AC. Phosphopeptide enrichment using various magnetic nanocomposites: an overview. Methods Mol Biol. 2016;1355:193–209.

    Article  CAS  PubMed  Google Scholar 

  53. Wada Y, Tajiri M, Yoshida S. Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem. 2004;76(22):6560–5.

    Article  CAS  PubMed  Google Scholar 

  54. Wohlgemuth J, Karas M, Eichhorn T, Hendriks R, Andrecht S. Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies. Anal Biochem. 2009;395(2):178–88.

    Article  CAS  PubMed  Google Scholar 

  55. Neue K, Mormann M, Peter-Katalinic J, Pohlentz G. Elucidation of glycoprotein structures by unspecific proteolysis and direct nanoESI mass spectrometric analysis of ZIC-HILIC-enriched glycopeptides. J Proteome Res. 2011;10(5):2248–60.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao Y, Chen Y, Xiong Z, Sun X, Zhang Q, Gan Y, Zhang L, Zhang W. Synthesis of magnetic zwitterionic-hydrophilic material for the selective enrichment of N-linked glycopeptides. J Chromatogr A. 2017;1482:23–31.

    Article  CAS  PubMed  Google Scholar 

  57. Yu L, Li X, Guo Z, Zhang X, Liang X. Hydrophilic interaction chromatography based enrichment of glycopeptides by using click maltose: a matrix with high selectivity and glycosylation heterogeneity coverage. Chemistry (Weinheim an der Bergstrasse, Germany). 2009;15(46):12618–26.

    CAS  Google Scholar 

  58. Li J, Li X, Guo Z, Yu L, Zou L, Liang X. Click maltose as an alternative to reverse phase material for desalting glycopeptides. Analyst. 2011;136(19):4075–82.

    Article  CAS  PubMed  Google Scholar 

  59. Nishikaze T, Kawabata S, Tanaka K. Boron forms unexpected glycopeptide derivatives during MALDI-MS experiment. J Mass Spectrom: JMS. 2013;48(9):1005–9.

    Article  CAS  PubMed  Google Scholar 

  60. Liu L, Yu M, Zhang Y, Wang C, Lu H. Hydrazide functionalized core-shell magnetic nanocomposites for highly specific enrichment of N-glycopeptides. ACS Appl Mater Interfaces. 2014;6(10):7823–32.

    Article  CAS  PubMed  Google Scholar 

  61. Tian Y, Koganti T, Yao Z, Cannon P, Shah P, Pietrovito L, Modesti A, Aiyetan P, DeLeon-Pennell K, Ma Y, Halade GV, Hicks C, Zhang H, Lindsey ML. Cardiac extracellular proteome profiling and membrane topology analysis using glycoproteomics. Proteomics Clin Appl. 2014;8(7–8):595–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. DeCoux A, Tian Y, DeLeon-Pennell KY, Nguyen NT, de Castro Brás LE, Flynn ER, Cannon PL, Griswold ME, Jin YF, Puskarich MA, Jones AE, Lindsey ML. Plasma Glycoproteomics reveals Sepsis outcomes linked to distinct proteins in common pathways. Crit Care Med. 2015;43(10):2049–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Iyer RP, de Castro Brás LE, Patterson NL, Bhowmick M, Flynn ER, Asher M, Cannon PL, Deleon-Pennell KY, Fields GB, Lindsey ML. Early matrix metalloproteinase-9 inhibition post-myocardial infarction worsens cardiac dysfunction by delaying inflammation resolution. J Mol Cell Cardiol. 2016;100:109–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sajid MS, Jabeen F, Hussain D, Ashiq MN, Najam-Ul-Haq M. Hydrazide-functionalized affinity on conventional support materials for glycopeptide enrichment. Anal Bioanal Chem. 2017;409(12):3135–43.

    Article  CAS  PubMed  Google Scholar 

  65. Kaji H, Yamauchi Y, Takahashi N, Isobe T. Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat Protoc. 2006;1(6):3019–27.

    Article  CAS  PubMed  Google Scholar 

  66. Kaji H, Isobe T. Stable isotope labeling of N-glycosylated peptides by enzymatic deglycosylation for mass spectrometry-based glycoproteomics. Methods Mol Biol. 2013;951:217–27.

    Article  CAS  PubMed  Google Scholar 

  67. Li L, Sweedler JV. Peptides in the brain: mass spectrometry-based measurement approaches and challenges. Ann Rev Anal Chem (Palo Alto, Calif). 2008;1:451–83.

    Article  CAS  Google Scholar 

  68. Boonen K, Landuyt B, Baggerman G, Husson SJ, Huybrechts J, Schoofs L. Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. J Sep Sci. 2008;31(3):427–45.

    Article  CAS  PubMed  Google Scholar 

  69. Verhaert P, Uttenweiler-Joseph S, de Vries M, Loboda A, Ens W, Standing KG. Matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry: an elegant tool for peptidomics. Proteomics. 2001;1(1):118–31.

    Article  CAS  PubMed  Google Scholar 

  70. Mohring T, Kellmann M, Jurgens M, Schrader M. Top-down identification of endogenous peptides up to 9 kDa in cerebrospinal fluid and brain tissue by nanoelectrospray quadrupole time-of-flight tandem mass spectrometry. J Mass Spectrom: JMS. 2005;40(2):214–26.

    Article  PubMed  CAS  Google Scholar 

  71. Falth M, Skold K, Svensson M, Nilsson A, Fenyo D, Andren PE. Neuropeptidomics strategies for specific and sensitive identification of endogenous peptides. Mol Cell Proteomics. 2007;6(7):1188–97.

    Article  PubMed  CAS  Google Scholar 

  72. Huang NF, Yu J, Sievers R, Li S, Lee RJ. Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng. 2005;11(11–12):1860–6.

    Article  CAS  PubMed  Google Scholar 

  73. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol. 2004;44(3):654–60.

    Article  CAS  PubMed  Google Scholar 

  74. Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials. 2009;30(5):751–6.

    Article  CAS  PubMed  Google Scholar 

  75. Mihardja SS, Yu J, Lee RJ. Extracellular matrix-derived peptides and myocardial repair. Cell Adhes Migr. 2011;5(2):111–3.

    Article  Google Scholar 

  76. Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K, Kangawa K. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol. 2005;45(4):608–16.

    Article  CAS  PubMed  Google Scholar 

  77. Tokudome T, Horio T, Soeki T, Mori K, Kishimoto I, Suga S-i, Yoshihara F, Kawano Y, Kohno M, Kangawa K. Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and Endothelin-1 signaling pathways. Endocrinology. 2004;145(5):2131–40.

    Article  CAS  PubMed  Google Scholar 

  78. Horio T, Tokudome T, Maki T, Yoshihara F, Suga S, Nishikimi T, Kojima M, Kawano Y, Kangawa K. Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology. 2003;144(6):2279–84.

    Article  CAS  PubMed  Google Scholar 

  79. Nagaya N, Uematsu M, Kojima M, Ikeda Y, Yoshihara F, Shimizu W, Hosoda H, Hirota Y, Ishida H, Mori H, Kangawa K. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation. 2001;104(12):1430–5.

    Article  CAS  PubMed  Google Scholar 

  80. Nagaya N, Miyatake K, Uematsu M, Oya H, Shimizu W, Hosoda H, Kojima M, Nakanishi N, Mori H, Kangawa K. Hemodynamic, renal, and hormonal effects of ghrelin infusion in patients with chronic heart failure. J Clin Endocrinol Metab. 2001;86(12):5854–9.

    Article  CAS  PubMed  Google Scholar 

  81. Beiert T, Tiyerili V, Knappe V, Effelsberg V, Linhart M, Stockigt F, Klein S, Schierwagen R, Trebicka J, Nickenig G, Schrickel JW, Andrie RP. Relaxin reduces susceptibility to post-infarct atrial fibrillation in mice due to anti-fibrotic and anti-inflammatory properties. Biochem Biophys Res Commun. 2017;490(3):643–9.

    Article  CAS  PubMed  Google Scholar 

  82. Samuel CS, Cendrawan S, Gao XM, Ming Z, Zhao C, Kiriazis H, Xu Q, Tregear GW, Bathgate RA, Du XJ. Relaxin remodels fibrotic healing following myocardial infarction. Lab Investig. 2011;91(5):675–90.

    Article  CAS  PubMed  Google Scholar 

  83. Espinoza L, Jaynes J, Bodnar R, Willis MS, Yates CC. Inhibiting cardiac fibrosis in myocardial infarction by CXCL10 agonist peptide. FASEB J. 2016;30(1 Supplement):1178.1.

    Google Scholar 

  84. Pleasant-Jenkins D, Reese C, Chinnakkannu P, Kasiganesan H, Tourkina E, Hoffman S, Kuppuswamy D. Reversal of maladaptive fibrosis and compromised ventricular function in the pressure overloaded heart by a caveolin-1 surrogate peptide. Lab Investig. 2017;97(4):370–82.

    Article  CAS  PubMed  Google Scholar 

  85. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci. 2017;38(4):406–24.

    Article  CAS  PubMed  Google Scholar 

  87. Jortani SA, Prabhu SD, Valdes R Jr. Strategies for developing biomarkers of heart failure. Clin Chem. 2004;50(2):265–78.

    Article  CAS  PubMed  Google Scholar 

  88. Dharmarajan K, Rich MW. Epidemiology, pathophysiology, and prognosis of heart failure in older adults. Heart Fail Clin. 2017;13(3):417–26.

    Article  PubMed  Google Scholar 

  89. Sun RR, Lu L, Liu M, Cao Y, Li XC, Liu H, Wang J, Zhang PY. Biomarkers and heart disease. Eur Rev Med Pharmacol Sci. 2014;18(19):2927–35.

    PubMed  Google Scholar 

  90. Gaggin HK, Januzzi JL. Biomarkers and diagnostics in heart failure. Biochim Biophys Acta (BBA) – Mol Basis Dis. 2013;1832(12):2442–50.

    Article  CAS  Google Scholar 

  91. Gaggin HK, Januzzi JL Jr. Natriuretic peptides in heart failure and acute coronary syndrome. Clin Lab Med. 2014;34(1):43–58, vi.

    Article  PubMed  Google Scholar 

  92. Lopes D, Menezes Falcao L. Mid-regional pro-adrenomedullin and ST2 in heart failure: contributions to diagnosis and prognosis. Revista portuguesa de cardiologia: orgao oficial da Sociedade Portuguesa de Cardiologia = Port J Cardiol: Off J Port Soc Cardiol. 2017;36(6):465–72.

    Google Scholar 

  93. Teerlink JR. Endothelins: pathophysiology and treatment implications in chronic heart failure. Curr Heart Fail Rep. 2005;2(4):191–7.

    Article  CAS  PubMed  Google Scholar 

  94. Agnello L, Bivona G, Lo Sasso B, Scazzone C, Bazan V, Bellia C, Ciaccio M. Galectin-3 in acute coronary syndrome. Clin Biochem. 2017;50(13–14):797–803.

    Article  CAS  PubMed  Google Scholar 

  95. Westermann D, Neumann JT, Sorensen NA, Blankenberg S. High-sensitivity assays for troponin in patients with cardiac disease. Nat Rev Cardiol. 2017;14(8):472–83.

    Article  CAS  PubMed  Google Scholar 

  96. Lin TE, Adams KF Jr, Patterson JH. Potential roles of vaptans in heart failure: experience from clinical trials and considerations for optimizing therapy in target patients. Heart Fail Clin. 2014;10(4):607–20.

    Article  PubMed  Google Scholar 

  97. Amin HZ, Amin LZ, Wijaya IP. Galectin-3: a novel biomarker for the prognosis of heart failure. Clujul Med (1957). 2017;90(2):129–32.

    Article  Google Scholar 

  98. de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail. 2009;11(9):811–7.

    Article  PubMed  CAS  Google Scholar 

  99. Singh M, Dalal S, Singh K. Osteopontin: at the cross-roads of myocyte survival and myocardial function. Life Sci. 2014;118(1):1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lok DJ, Lok SI, de la Porte PWB-A, Badings E, Lipsic E, van Wijngaarden J, de Boer RA, van Veldhuisen DJ, van der Meer P. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol. 2013;102(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  101. Pascual-Figal DA, Januzzi JL. The biology of ST2: the international ST2 consensus panel. Am J Cardiol. 2015;115(7 Suppl):3b–7b.

    Article  CAS  PubMed  Google Scholar 

  102. Malek F, Vondrakova D, Neuzil P. Role of soluble receptor ST2 measurement in diagnosis and prognostic stratification in patients with heart failure. Vnitrni lekarstvi. 2015;61(12):1039–41.

    PubMed  Google Scholar 

  103. Januzzi JL, Mebazaa A, Di Somma S. ST2 and prognosis in acutely decompensated heart failure: the international ST2 consensus panel. Am J Cardiol. 2015;115(7 Suppl):26b–31b.

    Article  CAS  PubMed  Google Scholar 

  104. Seki K, Sanada S, Kudinova AY, Steinhauser ML, Handa V, Gannon J, Lee RT. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail. 2009;2(6):684–91.

    Article  CAS  PubMed  Google Scholar 

  105. Januzzi JL Jr, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, O'Donoghue M, Sakhuja R, Chen AA, van Kimmenade RR, Lewandrowski KB, Lloyd-Jones DM, Wu AH. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (pro-brain natriuretic peptide investigation of dyspnea in the emergency department) study. J Am Coll Cardiol. 2007;50(7):607–13.

    Article  CAS  PubMed  Google Scholar 

  106. Boisot S, Beede J, Isakson S, Chiu A, Clopton P, Januzzi J, Maisel AS, Fitzgerald RL. Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. J Card Fail. 2008;14(9):732–8.

    Article  PubMed  Google Scholar 

  107. Rehman SU, Mueller T, Januzzi JL Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol. 2008;52(18):1458–65.

    Article  CAS  PubMed  Google Scholar 

  108. Manzano-Fernandez S, Mueller T, Pascual-Figal D, Truong QA, Januzzi JL. Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am J Cardiol. 2011;107(2):259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Henry-Okafor Q, Collins SP, Jenkins CA, Miller KF, Maron DJ, Naftilan AJ, Weintraub N, Fermann GJ, McPherson J, Menon S, Sawyer DB, Storrow AB. Soluble ST2 as a diagnostic and prognostic marker for acute heart failure syndromes. Open Biomark J. 2012;2012(5):1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Skau E, Henriksen E, Wagner P, Hedberg P, Siegbahn A, Leppert J. GDF-15 and TRAIL-R2 are powerful predictors of long-term mortality in patients with acute myocardial infarction. Eur J Prev Cardiol. 2017;24:1576. https://doi.org/10.1177/2047487317725017.

    Article  PubMed  Google Scholar 

  111. Shemisa K, Bhatt A, Cheeran D, Neeland IJ. Novel biomarkers of subclinical cardiac dysfunction in the general population. Curr Heart Fail Rep. 2017;14(4):301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chan MMY, Santhanakrishnan R, Chong JPC, Chen Z, Tai BC, Liew OW, Ng TP, Ling LH, Sim D, Leong KTG, Yeo PSD, Ong H-Y, Jaufeerally F, Wong RC-C, Chai P, Low AF, Richards AM, Lam CSP. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2016;18(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  113. Lofsjogard J, Kahan T, Diez J, Lopez B, Gonzalez A, Ravassa S, Mejhert M, Edner M, Persson H. Usefulness of collagen carboxy-terminal propeptide and telopeptide to predict disturbances of long-term mortality in patients >/=60 years with heart failure and reduced ejection fraction. Am J Cardiol. 2017;119(12):2042–8.

    Article  PubMed  CAS  Google Scholar 

  114. Lipczynska M, Szymanski P, Kumor M, Klisiewicz A, Hoffman P. Collagen turnover biomarkers and systemic right ventricle remodeling in adults with previous atrial switch procedure for transposition of the great arteries. PLoS One. 2017;12(8):e0180629.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Liu JH, Chen Y, Zhen Z, Ho LM, Tsang A, Yuen M, Lam K, Tse HF, Yiu KH. Relationship of biomarkers of extracellular matrix with myocardial function in type 2 diabetes mellitus. Biomark Med. 2017;11(7):569–78.

    Article  CAS  PubMed  Google Scholar 

  116. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol. 2010;48(3):504–11.

    Article  CAS  PubMed  Google Scholar 

  117. Cheng CW, Wang CH, Lee JF, Kuo LT, Cherng WJ. Levels of blood periostin decrease after acute myocardial infarction and are negatively associated with ventricular function after 3 months. J Investig Med. 2012;60(2):523–8.

    Article  CAS  PubMed  Google Scholar 

  118. Kuhn B, del Monte F, Hajjar RJ, Chang Y-S, Lebeche D, Arab S, Keating MT. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13(8):962–9.

    Article  PubMed  CAS  Google Scholar 

  119. Okamoto H, Imanaka-Yoshida K. Matricellular proteins: new molecular targets to prevent heart failure. Cardiovasc Ther. 2012;30(4):e198–209.

    Article  CAS  PubMed  Google Scholar 

  120. Lindsey ML, Zouein FA, Tian Y, Padmanabhan Iyer R, de Castro Bras LE. Osteopontin is proteolytically processed by matrix metalloproteinase 9. Can J Physiol Pharmacol. 2015;93(10):879–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hou ZH, Lu B, Gao Y, Cao HL, Yu FF, Jing N, Chen X, Cong XF, Roy SK, Budoff MJ. Matrix metalloproteinase-9 (MMP-9) and myeloperoxidase (MPO) levels in patients with nonobstructive coronary artery disease detected by coronary computed tomographic angiography. Acad Radiol. 2013;20(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  122. Valiente-Alandi I, Schafer AE, Blaxall BC. Extracellular matrix-mediated cellular communication in the heart. J Mol Cell Cardiol. 2016;91:228–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kirk JA, Cingolani OH. Thrombospondins in the transition from myocardial infarction to heart failure. J Mol Cell Cardiol. 2016;90:102–10.

    Article  CAS  PubMed  Google Scholar 

  124. Schellings MW, van Almen GC, Sage EH, Heymans S. Thrombospondins in the heart: potential functions in cardiac remodeling. J Cell Commun Signal. 2009;3(3–4):201–13.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hugo CP, Pichler RP, Schulze-Lohoff E, Prols F, Adler S, Krutsch HC, Murphy-Ullrich JE, Couser WG, Roberts DD, Johnson RJ. Thrombospondin peptides are potent inhibitors of mesangial and glomerular endothelial cell proliferation in vitro and in vivo. Kidney Int. 1999;55(6):2236–49.

    Article  CAS  PubMed  Google Scholar 

  126. Rabhi-Sabile S, Thibert V, Legrand C. Thrombospondin peptides inhibit the secretion-dependent phase of platelet aggregation. Blood Coagul Fibrinolysis: Int J Haemost Thromb. 1996;7(2):237–40.

    Article  CAS  Google Scholar 

  127. Kaiser R, Frantz C, Bals R, Wilkens H. The role of circulating thrombospondin-1 in patients with precapillary pulmonary hypertension. Respir Res. 2016;17(1):96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Belmadani S, Bernal J, Wei C-C, Pallero MA, Dell’Italia L, Murphy-Ullrich JE, Berecek KH. A Thrombospondin-1 antagonist of transforming growth factor-β activation blocks cardiomyopathy in rats with diabetes and elevated angiotensin II. Am J Pathol. 2007;171(3):777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Heart Association 14SDG18860050; by the National Institute of Health HL075360, HL129823, HL051971, GM114833, GM115428, and GM104357; and by the Biomedical Laboratory Research and Development Service of the Veterans Affairs Office of Research and Development Award 5I01BX000505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisandra E. de Castro Brás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Castro Brás, L.E., Lindsey, M.L. (2019). Using Peptidomics to Identify Extracellular Matrix-Derived Peptides as Novel Therapeutics for Cardiac Disease. In: Willis, M., Yates, C., Schisler, J. (eds) Fibrosis in Disease . Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-98143-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98143-7_13

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-98142-0

  • Online ISBN: 978-3-319-98143-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics