Skip to main content

Matrix Metalloproteinase-9-Dependent Mechanisms of Reduced Contractility and Increased Stiffness in the Aging Heart

  • Chapter
  • First Online:
Fibrosis in Disease

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

With age, the myocardium gradually undergoes a resetting of homeostasis that includes structural and physiological adaptations. Cardiomyocyte hypertrophy is an initiating factor and, combined with a decoupling of angiogenesis, ultimately leads to a reduction in myocyte vessel number that drives an inflammatory response and extracellular matrix (ECM) accumulation. In the absence of a secondary injury, the changes associated with aging in the heart are subtle and result in slight to moderate impaired diastolic physiology. Collagen accumulates due to increased deposition and cross-linking; at the same time, the rate of ECM degradation also increases, due to increased expression of matrix metalloproteinases (MMPs). One MMP in particular, MMP-9, has a direct cause-and-effect relationship. MMP-9 proteolyzes a wide array of substrates, including ECM components, inflammatory components (cytokines, chemokines, and their receptors), and repair components (growth factors and angiogenic factors). Increased MMP-9 is linked to an increase in the number of macrophages. The connection between myocytes, perfusion, inflammation, and ECM accumulation and how MMP-9 regulates these processes are summarized here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Annoni G, Luvara G, Arosio B, Gagliano N, Fiordaliso F, Santambrogio D, Jeremic G, Mircoli L, Latini R, Vergani C, Masson S. Age-dependent expression of fibrosis-related genes and collagen deposition in the rat myocardium. Mech Ageing Dev. 1998;101:57–72.

    Article  CAS  PubMed  Google Scholar 

  2. Antia M, Baneyx G, Kubow KE, Vogel V. Fibronectin in aging extracellular matrix fibrils is progressively unfolded by cells and elicits an enhanced rigidity response. Faraday Discuss. 2008;139:229–49.; discussion 309-225, 419-220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anversa P, Hiler B, Ricci R, Guideri G, Olivetti G. Myocyte cell loss and myocyte hypertrophy in the aging rat heart. J Am Coll Cardiol. 1986;8:1441–8.

    Article  CAS  PubMed  Google Scholar 

  4. Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res. 1990;67:871–85.

    Article  CAS  PubMed  Google Scholar 

  5. Anversa P, Rota M, Urbanek K, Hosoda T, Sonnenblick E, Leri A, Kajstura J, Bolli R. Myocardial aging. Basic Res Cardiol. 2005;100:482–93.

    Article  CAS  PubMed  Google Scholar 

  6. Asif M, Egan J, Vasan S, Jyothirmayi GN, Masurekar MR, Lopez S, Williams C, Torres RL, Wagle D, Ulrich P, Cerami A, Brines M, Regan TJ. An advanced glycation end product cross-link breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci U S A. 2000;97:2809–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Basso N, Cini R, Pietrelli A, Ferder L, Terragno NA, Inserra F. Protective effect of long-term angiotensin II inhibition. Am J Physiol Heart Circ Physiol. 2007;293:H1351–8.

    Article  CAS  PubMed  Google Scholar 

  8. Biernacka A, Frangogiannis NG. Aging cardiac fibrosis. Aging Dis. 2011;2:158–73.

    PubMed  PubMed Central  Google Scholar 

  9. Bildyug NB, Voronkina IV, Smagina LV, Yudintseva NM, Pinaev GP. Matrix metalloproteinases in primary culture of cardiomyocytes. Biochemistry (Mosc). 2015;80:1318–26.

    Article  CAS  Google Scholar 

  10. Bokov AF, Lindsey ML, Khodr C, Sabia MR, Richardson A. Long-lived Ames dwarf mice are resistant to chemical stressors. J Gerontol A Biol Sci Med Sci. 2009;64:819–27.

    Article  PubMed  CAS  Google Scholar 

  11. Bonnema DD, Webb CS, Pennington WR, Stroud RE, Leonardi AE, Clark LL, McClure CD, Finklea L, Spinale FG, Zile MR. Effects of age on plasma matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). J Card Fail. 2007;13:530–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bradshaw AD. The role of SPARC in extracellular matrix assembly. J Cell Commun Signal. 2009;3:239–46.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bradshaw AD, Baicu CF, Rentz TJ, Van Laer AO, Bonnema DD, Zile MR. Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Am J Physiol Heart Circ Physiol. 2010;298:H614–22.

    Article  CAS  PubMed  Google Scholar 

  14. Brandes RP, Fleming I, Busse R. Endothelial aging. Cardiovasc Res. 2005;66:286–94.

    Article  CAS  PubMed  Google Scholar 

  15. Burkauskiene A. Age-related changes in the structure of myocardial collagen network of auricle of the right atrium in healthy persons and ischemic heart disease patients. Medicina (Kaunas). 2005;41:145–54.

    Google Scholar 

  16. Campbell DJ, Somaratne JB, Jenkins AJ, Prior DL, Yii M, Kenny JF, Newcomb AE, Schalkwijk CG, Black MJ, Kelly DJ. Diastolic dysfunction of aging is independent of myocardial structure but associated with plasma advanced glycation end-product levels. PLoS One. 2012;7:e49813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cauwe B, Martens E, Proost P, Opdenakker G. Multidimensional degradomics identifies systemic autoantigens and intracellular matrix proteins as novel gelatinase B/MMP-9 substrates. Integr Biol: Quant Biosci Nano Macro. 2009;1:404–26.

    Article  CAS  Google Scholar 

  18. Cauwe B, Opdenakker G. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol. 2010;45:351–423.

    Article  CAS  PubMed  Google Scholar 

  19. Cauwe B, Van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol. 2007;42:113–85.

    Article  CAS  PubMed  Google Scholar 

  20. Chiao YA, Dai Q, Zhang J, Lin J, Lopez EF, Ahuja SS, Chou YM, Lindsey ML, Jin YF. Multi-analyte profiling reveals matrix metalloproteinase-9 and monocyte chemotactic protein-1 as plasma biomarkers of cardiac aging. Circ Cardiovasc Genet. 2011;4:455–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiao YA, Ramirez TA, Zamilpa R, Okoronkwo SM, Dai Q, Zhang J, Jin YF, Lindsey ML. Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice. Cardiovasc Res. 2012;96:444–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chow AK, Cena J, Schulz R. Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol. 2007;152:189–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dai DF, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, Gollahon K, Martin GM, Loeb LA, Ladiges WC, Rabinovitch PS. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation. 2009;119:2789–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Castro Bras LE, Cates CA, DeLeon-Pennell KY, Ma Y, Iyer RP, Halade GV, Yabluchanskiy A, Fields GB, Weintraub ST, Lindsey ML. Citrate synthase is a novel in vivo matrix metalloproteinase-9 substrate that regulates mitochondrial function in the postmyocardial infarction left ventricle. Antioxid Redox Signal. 2014;21:1974–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. de Castro Bras LE, Toba H, Baicu CF, Zile MR, Weintraub ST, Lindsey ML, Bradshaw AD. Age and SPARC change the extracellular matrix composition of the left ventricle. Biomed Res Int. 2014;2014:810562.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Domenighetti AA, Wang Q, Egger M, Richards SM, Pedrazzini T, Delbridge LM. Angiotensin II-mediated phenotypic cardiomyocyte remodeling leads to age-dependent cardiac dysfunction and failure. Hypertension. 2005;46:426–32.

    Article  CAS  PubMed  Google Scholar 

  27. Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE, Seals DR. Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res. 2007;100:1659–66.

    Article  CAS  PubMed  Google Scholar 

  28. Eckhard U, Huesgen PF, Schilling O, Bellac CL, Butler GS, Cox JH, Dufour A, Goebeler V, Kappelhoff R, Keller UA, Klein T, Lange PF, Marino G, Morrison CJ, Prudova A, Rodriguez D, Starr AE, Wang Y. Overall CM. Active site specificity profiling of the matrix metalloproteinase family: proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biol. 2016;49:37–60.

    Article  CAS  PubMed  Google Scholar 

  29. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161–74.

    Article  CAS  PubMed  Google Scholar 

  30. Eghbali M, Blumenfeld OO, Seifter S, Buttrick PM, Leinwand LA, Robinson TF, Zern MA, Giambrone MA. Localization of types I, III and IV collagen mRNAs in rat heart cells by in situ hybridization. J Mol Cell Cardiol. 1989;21:103–13.

    Article  CAS  PubMed  Google Scholar 

  31. Eghbali M, Eghbali M, Robinson TF, Seifter S, Blumenfeld OO. Collagen accumulation in heart ventricles as a function of growth and aging. Cardiovasc Res. 1989;23:723–9.

    Article  CAS  PubMed  Google Scholar 

  32. Finkel T. The metabolic regulation of aging. Nat Med. 2015;21:1416–23.

    Article  CAS  PubMed  Google Scholar 

  33. Franceschi C. Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev. 2007;65:S173–6.

    Article  PubMed  Google Scholar 

  34. Gazoti Debessa CR, Mesiano Maifrino LB, Rodrigues de Souza R. Age related changes of the collagen network of the human heart. Mech Ageing Dev. 2001;122:1049–58.

    Article  CAS  PubMed  Google Scholar 

  35. Gunning JF, Coleman HN 3rd. Myocardial oxygen consumption during experimental hypertrophy and congestive heart failure. J Mol Cell Cardiol. 1973;5:25–38.

    Article  CAS  PubMed  Google Scholar 

  36. Hartog JW, Voors AA, Bakker SJ, Smit AJ, van Veldhuisen DJ. Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications. Eur J Heart Fail. 2007;9:1146–55.

    Article  CAS  PubMed  Google Scholar 

  37. Herrera MD, Mingorance C, Rodriguez-Rodriguez R, Alvarez de Sotomayor M. Endothelial dysfunction and aging: an update. Ageing Res Rev. 2010;9:142–52.

    Article  CAS  PubMed  Google Scholar 

  38. Horn MA, Graham HK, Richards MA, Clarke JD, Greensmith DJ, Briston SJ, Hall MC, Dibb KM, Trafford AW. Age-related divergent remodeling of the cardiac extracellular matrix in heart failure: collagen accumulation in the young and loss in the aged. J Mol Cell Cardiol. 2012;53:82–90.

    Article  CAS  PubMed  Google Scholar 

  39. Horn MA, Trafford AW. Aging and the cardiac collagen matrix: novel mediators of fibrotic remodelling. J Mol Cell Cardiol. 2016;93:175–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huet E, Gabison E, Vallee B, Mougenot N, Linguet G, Riou B, Jarosz C, Menashi S, Besse S. Deletion of extracellular matrix metalloproteinase inducer/CD147 induces altered cardiac extracellular matrix remodeling in aging mice. J Physiol Pharmacol. 2015;66:355–66.

    CAS  PubMed  Google Scholar 

  41. Hulsmans M, Sam F, Nahrendorf M. Monocyte and macrophage contributions to cardiac remodeling. J Mol Cell Cardiol. 2016;93:149–55.

    Article  CAS  PubMed  Google Scholar 

  42. Johnson JL, Devel L, Czarny B, George SJ, Jackson CL, Rogakos V, Beau F, Yiotakis A, Newby AC, Dive VA. Selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler Thromb Vasc Biol. 2011;31:528–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jugdutt BI, Jelani A, Palaniyappan A, Idikio H, Uweira RE, Menon V, Jugdutt CE. Aging-related early changes in markers of ventricular and matrix remodeling after Reperfused ST-segment elevation myocardial infarction in the canine model: effect of early therapy with an angiotensin II type 1 receptor blocker. Circulation. 2010;122:341–51.

    Article  CAS  PubMed  Google Scholar 

  44. Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara JA, Chapnick S, Reiss K, Olivetti G, Anversa P. Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Phys. 1996;271:H1215–28.

    CAS  Google Scholar 

  45. Kandasamy AD, Chow AK, Ali MAM, Schulz R. Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res. 2010;85:413–23.

    Article  CAS  PubMed  Google Scholar 

  46. Kaplan P, Jurkovicova D, Babusikova E, Hudecova S, Racay P, Sirova M, Lehotsky J, Drgova A, Dobrota D, Krizanova O. Effect of aging on the expression of intracellular Ca(2+) transport proteins in a rat heart. Mol Cell Biochem. 2007;301:219–26.

    Article  CAS  PubMed  Google Scholar 

  47. Khan AS, Lynch CD, Sane DC, Willingham MC, Sonntag WE. Growth hormone increases regional coronary blood flow and capillary density in aged rats. J Gerontol A Biol Sci Med Sci. 2001;56:B364–71.

    Article  CAS  PubMed  Google Scholar 

  48. Khan AS, Sane DC, Wannenburg T, Sonntag WE. Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system. Cardiovasc Res. 2002;54:25–35.

    Article  CAS  PubMed  Google Scholar 

  49. Lakatta EG. Cardiovascular reserve capacity in healthy older humans. Aging (Milano). 1994;6:213–23.

    CAS  Google Scholar 

  50. Lakatta EG, Arterial LD. Cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation. 2003;107:346–54.

    Article  PubMed  Google Scholar 

  51. Lin J, Lopez E, Jin Y, Van Remmen H, Bauch T, Han H, Lindsey M. Age-related cardiac muscle sarcopenia: combining experimental and mathematical modeling to identify mechanisms. Exp Gerontol. 2008;43:296–306.

    Article  CAS  PubMed  Google Scholar 

  52. Lindsey ML, Goshorn DK, Squires CE, Escobar GP, Hendrick JW, Mingoia JT, Sweterlitsch SE, Spinale FG. Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function. Cardiovasc Res. 2005;66:410–9.

    Article  CAS  PubMed  Google Scholar 

  53. Lindsey ML, Iyer RP, Jung M, DeLeon-Pennell KY, Ma Y. Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J Mol Cell Cardiol. 2016;91:134–40.

    Article  CAS  PubMed  Google Scholar 

  54. Liu J, Masurekar MR, Vatner DE, Jyothirmayi GN, Regan TJ, Vatner SF, Meggs LG, Malhotra A. Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart. Am J Physiol Heart Circ Physiol. 2003;285:H2587–91.

    Article  CAS  PubMed  Google Scholar 

  55. Ma Y, Chiao YA, Clark R, Flynn ER, Yabluchanskiy A, Ghasemi O, Zouein F, Lindsey ML, Jin YF. Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence. Cardiovasc Res. 2015;106:421–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma Y, Chiao YA, Zhang J, Manicone AM, Jin YF, Lindsey ML. Matrix metalloproteinase-28 deletion amplifies inflammatory and extracellular matrix responses to cardiac aging. Microsc Microanal. 2012;18:81–90.

    Article  CAS  PubMed  Google Scholar 

  57. Mamuya W, Chobanian A, Brecher P. Age-related changes in fibronectin expression in spontaneously hypertensive, Wistar-Kyoto, and Wistar rat hearts. Circ Res. 1992;71:1341–50.

    Article  CAS  PubMed  Google Scholar 

  58. Martin-Fernandez B, Gredilla R. Mitochondria and oxidative stress in heart aging. Age (Dordr). 2016;38(4):225–38.

    Article  CAS  Google Scholar 

  59. Mendes AB, Ferro M, Rodrigues B, Souza MR, Araujo RC, Souza RR. Quantification of left ventricular myocardial collagen system in children, young adults, and the elderly. Medicina (B Aires). 2012;72:216–20.

    CAS  Google Scholar 

  60. Meschiari CA, Ero OK, Pan H, Finkel T, Lindsey ML. The impact of aging on cardiac extracellular matrix. Geroscience. 2017;39:7–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nguyen NT, Yabluchanskiy A, de Castro Bras LE, Jin Y-F, Lindsey ML. Aging-related changes in extracellular matrix: implications for ventricular remodeling following myocardial infarction. In: Jugdutt BI, editor. Aging and heart failure mechanisms and management. New York, Springer; 2014. p. XXII, 475 p. 484 illus., 450 illus. in color. https://www.amazon.com/Aging-Heart-Failure-Mechanisms-Management/dp/1493902679.

    Chapter  Google Scholar 

  62. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res. 1991;68:1560–8.

    Article  CAS  PubMed  Google Scholar 

  63. Olivetti G, Ricci R, Anversa P. Hyperplasia of myocyte nuclei in long-term cardiac hypertrophy in rats. J Clin Invest. 1987;80:1818–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Padmanabhan Iyer R, Chiao YA, Flynn ER, Hakala K, Cates CA, Weintraub ST, de Castro BrĂ¡s LE. Matrix metalloproteinase-9-dependent mechanisms of reduced contractility and increased stiffness in the aging heart. Proteomics Clin Appl. 2016;10:92–107.

    Article  CAS  PubMed  Google Scholar 

  65. Parati G, Frattola A, Di Rienzo M, Castiglioni P, Mancia G. Broadband spectral analysis of blood pressure and heart rate variability in very elderly subjects. Hypertension. 1997;30:803–8.

    Article  CAS  PubMed  Google Scholar 

  66. Prockop DJ, Kivirikko KI. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 1995;64:403–34.

    Article  CAS  PubMed  Google Scholar 

  67. Riches K, Morley ME, Turner NA, O'Regan DJ, Ball SG, Peers C, Porter KE. Chronic hypoxia inhibits MMP-2 activation and cellular invasion in human cardiac myofibroblasts. J Mol Cell Cardiol. 2009;47:391–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rossi S, Fortunati I, Carnevali L, Baruffi S, Mastorci F, Trombini M, Sgoifo A, Corradi D, Callegari S, Miragoli M, Macchi E. The effect of aging on the specialized conducting system: a telemetry ECG study in rats over a 6 month period. PLoS One. 2014;9:e112697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Sternlicht M, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin. 2012;8:143–64.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016;61:654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thomas DP, Cotter TA, Li X, McCormick RJ, Gosselin LE. Exercise training attenuates aging-associated increases in collagen and collagen crosslinking of the left but not the right ventricle in the rat. Eur J Appl Physiol. 2001;85:164–9.

    Article  CAS  PubMed  Google Scholar 

  73. Thomas DP, McCormick RJ, Zimmerman SD, Vadlamudi RK, Gosselin LE. Aging- and training-induced alterations in collagen characteristics of rat left ventricle and papillary muscle. Am J Phys. 1992;263:H778–83.

    CAS  Google Scholar 

  74. Toba H, Cannon PL, Yabluchanskiy A, Iyer RP, D'Armiento J, Lindsey ML. Transgenic overexpression of macrophage matrix metalloproteinase-9 exacerbates age-related cardiac hypertrophy, vessel rarefaction, inflammation, and fibrosis. Am J Physiol Heart Circ Physiol. 2017;312:H375–h383.

    Article  PubMed  Google Scholar 

  75. Toba H, de Castro Bras LE, Baicu CF, Zile MR, Lindsey ML, Bradshaw AD. Secreted protein acidic and rich in cysteine facilitates age-related cardiac inflammation and macrophage M1 polarization. Am J Phys Cell Phys. 2015;308:C972–82.

    Article  CAS  Google Scholar 

  76. Toprak A, Reddy J, Chen W, Srinivasan S, Berenson G. Relation of pulse pressure and arterial stiffness to concentric left ventricular hypertrophy in young men (from the Bogalusa Heart Study). Am J Cardiol. 2009;103:978–84.

    Article  PubMed  Google Scholar 

  77. Toussaint O, Royer V, Salmon M, Remacle J. Stress-induced premature senescence and tissue ageing. Biochem Pharmacol. 2002;64:1007–9.

    Article  CAS  PubMed  Google Scholar 

  78. Turner NA. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J Mol Cell Cardiol. 2016;94:189–200.

    Article  CAS  PubMed  Google Scholar 

  79. Vanhoutte D, Heymans STIMP. Cardiac remodeling: ‘Embracing the MMP-independent-side of the family’. J Mol Cell Cardiol. 2010;48:445–53.

    Article  CAS  PubMed  Google Scholar 

  80. Voorhees AP, DeLeon-Pennell KY, Ma Y, Halade GV, Yabluchanskiy A, Iyer RP, Flynn E, Cates CA, Lindsey ML, Han HC. Building a better infarct: modulation of collagen cross-linking to increase infarct stiffness and reduce left ventricular dilation post-myocardial infarction. J Mol Cell Cardiol. 2015;85:229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI. Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res. 1988;62:757–65.

    Article  CAS  PubMed  Google Scholar 

  82. Wohlgemuth SE, Calvani R, Marzetti E. The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J Mol Cell Cardiol. 2014;71:62–70.

    Article  CAS  PubMed  Google Scholar 

  83. Wu JJ, Liu J, Chen EB, Wang JJ, Cao L, Narayan N, Fergusson MM, Rovira II, Allen M, Springer DA, Lago CU, Zhang S, Du Bois W, Ward T, De Cabo R, Gavrilova O, Mock B, Finkel T. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep. 2013;4:913–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yabluchanskiy A, Ma Y, Chiao YA, Lopez EF, Voorhees AP, Toba H, Hall ME, Han HC, Lindsey ML, Jin YF. Cardiac aging is initiated by matrix metalloproteinase-9-mediated endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2014;306:H1398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yabluchanskiy A, Ma Y, DeLeon-Pennell KY, Altara R, Halade GV, Voorhees AP, Nguyen NT, Jin YF, Winniford MD, Hall ME, Han HC, Lindsey ML. Myocardial infarction superimposed on aging: MMP-9 deletion promotes M2 macrophage polarization. J Gerontol A Biol Sci Med Sci. 2016;71(4):475–83.

    Article  CAS  PubMed  Google Scholar 

  86. Yamamoto D, Takai S. Pharmacological implications of MMP-9 inhibition by ACE inhibitors. Curr Med Chem. 2009;16:1349–54.

    Article  CAS  PubMed  Google Scholar 

  87. Yamamoto D, Takai S, Jin D, Inagaki S, Tanaka K, Miyazaki M. Molecular mechanism of imidapril for cardiovascular protection via inhibition of MMP-9. J Mol Cell Cardiol. 2007;43:670–6.

    Article  CAS  PubMed  Google Scholar 

  88. Yamamoto D, Takai S, Miyazaki M. Prediction of interaction mode between a typical ACE inhibitor and MMP-9 active site. Biochem Biophys Res Commun. 2007;354:981–4.

    Article  CAS  PubMed  Google Scholar 

  89. Yang CQ, Li W, Li SQ, Li J, Li YW, Kong SX, Liu RM, Wang SM, Lv WM. MCP-1 stimulates MMP-9 expression via ERK 1/2 and p38 MAPK signaling pathways in human aortic smooth muscle cells. Cell Physiol Biochem. 2014;34:266–76.

    Article  CAS  PubMed  Google Scholar 

  90. Zeigler AC, Richardson WJ, Holmes JW, Saucerman JJ. Computational modeling of cardiac fibroblasts and fibrosis. J Mol Cell Cardiol. 2016;93:73–83.

    Article  CAS  PubMed  Google Scholar 

  91. Zweier JL, Chen CA, Druhan LJS. glutathionylation reshapes our understanding of endothelial nitric oxide synthase uncoupling and nitric oxide/reactive oxygen species-mediated signaling. Antioxid Redox Signal. 2011;14:1769–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Heart Association 14SDG18860050; the National Institute of Health HL075360, HL129823, HL051971, GM114833, GM115428, and GM104357; and the Biomedical Laboratory Research and Development Service of the Veterans Affairs Office of Research and Development Award 5I01BX000505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merry L. Lindsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lindsey, M.L., de Castro BrĂ¡s, L.E. (2019). Matrix Metalloproteinase-9-Dependent Mechanisms of Reduced Contractility and Increased Stiffness in the Aging Heart. In: Willis, M., Yates, C., Schisler, J. (eds) Fibrosis in Disease . Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-98143-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98143-7_12

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-98142-0

  • Online ISBN: 978-3-319-98143-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics