Skip to main content

Fibrotic Signaling in Cardiomyopathies

  • Chapter
  • First Online:
Fibrosis in Disease

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Cardiomyopathies are a group of diseases characterized by abnormalities in structure and function of the heart muscles (Abelmann, Prog Cardiovasc Dis. 1984;27:73–94). The dysfunction of the myocardium leads to heart failure and arrhythmias. There are a variety of causes of cardiomyopathy including genetics, inflammation, hypertension, diabetes, ischemia, alcohol consumption, drugs, and infections among many other reasons (Abelmann, Prog Cardiovasc Dis. 1984;27:73–94). The definition of cardiomyopathy can vary and sometimes excludes ischemia and hypertension as underlying etiologies (Elliott et al. Eur Heart J. 2008;29:270–276). However, in this chapter, we will include ischemic and hypertensive disease in the definition of cardiomyopathy and focus on ischemia in describing the pathology of cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Report of the WHO/ISFC task force on the definition and classification of cardiomyopathies. Br Heart J. 1980;44(6):672–3.

    Google Scholar 

  2. Elliott P. Diagnosis and management of dilated cardiomyopathy. Heart. 2000;84(1):106. https://doi.org/10.1136/heart.84.1.106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luk A, Ahn E, Soor GS, Butany J. Dilated cardiomyopathy: a review. J Clin Pathol. 2009;62(3):219–25. https://doi.org/10.1136/jcp.2008.060731.

    Article  CAS  PubMed  Google Scholar 

  4. Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, Baughman KL, Kasper EK. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342(15):1077–84. https://doi.org/10.1056/NEJM200004133421502.

    Article  CAS  PubMed  Google Scholar 

  5. Abelmann WH, Lorell BH. The challenge of cardiomyopathy. J Am Coll Cardiol. 1989;13(6):1219–39.

    Article  CAS  PubMed  Google Scholar 

  6. Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331(23):1564–75. https://doi.org/10.1056/NEJM199412083312307.

    Article  CAS  PubMed  Google Scholar 

  7. Francis GS. Pathophysiology of chronic heart failure. Am J Med. 2001;110(Suppl 7A):37S–46S.

    Article  PubMed  Google Scholar 

  8. Anversa P, Olivetti G, Leri A, Liu Y, Kajstura J. Myocyte cell death and ventricular remodeling. Curr Opin Nephrol Hypertens. 1997;6(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  9. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996;335(16):1182–9. https://doi.org/10.1056/NEJM199610173351603.

    Article  CAS  PubMed  Google Scholar 

  10. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med. 1997;336(16):1131–41. https://doi.org/10.1056/NEJM199704173361603.

    Article  CAS  PubMed  Google Scholar 

  11. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Sonnenblick EH, Olivetti G, Anversa P. The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol. 1995;27(1):291–305.

    Article  CAS  PubMed  Google Scholar 

  12. Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, Malec KB, McKeown PP, Schocken DD. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation. 1992;86(2):426–30.

    Article  CAS  PubMed  Google Scholar 

  13. Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease. Circ Res. 1995;77(5):863–8.

    Article  CAS  PubMed  Google Scholar 

  14. Weber KT. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation. 1997;96(11):4065–82.

    Article  CAS  PubMed  Google Scholar 

  15. Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker IH, Armstrong PW. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation. 1990;82(4):1387–401.

    Article  CAS  PubMed  Google Scholar 

  16. Weber KT, Brilla CG, Janicki JS. Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res. 1993;27(3):341–8.

    Article  CAS  PubMed  Google Scholar 

  17. Weber KT, Pick R, Jalil JE, Janicki JS, Carroll EP. Patterns of myocardial fibrosis. J Mol Cell Cardiol. 1989;21(Suppl 5):121–31.

    Article  PubMed  Google Scholar 

  18. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991;83(6):1849–65.

    Article  CAS  PubMed  Google Scholar 

  19. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary artery risk development in (young) adults. Circulation. 1995;92(4):785–9.

    Article  CAS  PubMed  Google Scholar 

  20. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002;287(10):1308–20.

    Article  PubMed  Google Scholar 

  21. Maron BJ, McKenna WJ, Danielson GK, Kappenberger LJ, Kuhn HJ, Seidman CE, Shah PM, Spencer WH, Spirito P, Ten Cate FJ, Wigle ED, Task Force on Clinical Expert Consensus Documents, American College of Cardiology, and Committee for Practice Guidelines, European Society of Cardiology. American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on Hypertrophic Cardiomyopathy. A Report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol. 2003;42(9):1687–713.

    Article  PubMed  Google Scholar 

  22. Braunwald E, Lambrew CT, Rockoff SD, Ross J, Morrow AG. Idiopathic hypertrophic subaortic stenosis. I. A description of the disease based upon an analysis of 64 patients. Circulation. 1964;30(SUPPL 4):3–119.

    Google Scholar 

  23. Sherrid MV. Dynamic left ventricular outflow obstruction in hypertrophic cardiomyopathy revisited: significance, pathogenesis, and treatment. Cardiol Rev. 1998;6(3):135–45.

    Article  CAS  PubMed  Google Scholar 

  24. Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54(3):201–11. https://doi.org/10.1016/j.jacc.2009.02.075.

    Article  CAS  PubMed  Google Scholar 

  25. Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet (London, England). 2013;381(9862):242–55. https://doi.org/10.1016/S0140-6736(12)60397-3.

    Article  Google Scholar 

  26. Walsh R, Buchan R, Wilk A, John S, Felkin LE, Thomson KL, Chiaw TH, Loong CCW, Pua CJ, Raphael C, Prasad S, Barton PJ, Funke B, Watkins H, Ware JS, Cook SA. Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes. Eur Heart J. 2017; https://doi.org/10.1093/eurheartj/ehw603.

  27. Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, Mazzarotto F, Blair E, Seller A, Taylor JC, Minikel EV, Exome Aggregation Consortium, null, MacArthur DG, Farrall M, Cook SA, Watkins H. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19(2):192–203. https://doi.org/10.1038/gim.2016.90.

    Article  PubMed  Google Scholar 

  28. Frey N, Luedde M, Katus HA. Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol. 2011;9(2):91–100. https://doi.org/10.1038/nrcardio.2011.159.

    Article  CAS  PubMed  Google Scholar 

  29. Marian AJ, Roberts R. The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2001;33(4):655–70. https://doi.org/10.1006/jmcc.2001.1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):749–70. https://doi.org/10.1161/CIRCRESAHA.117.311059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Corrado D, Thiene G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: clinical impact of molecular genetic studies. Circulation. 2006;113(13):1634–7. https://doi.org/10.1161/CIRCULATIONAHA.105.616490.

    Article  PubMed  Google Scholar 

  32. Peters S, Trümmel M, Meyners W. Prevalence of right ventricular dysplasia-cardiomyopathy in a non-referral hospital. Int J Cardiol. 2004;97(3):499–501. https://doi.org/10.1016/j.ijcard.2003.10.037.

    Article  PubMed  Google Scholar 

  33. Gerull B, Heuser A, Wichter T, Paul M, Basson CT, McDermott DA, Lerman BB, Markowitz SM, Ellinor PT, MacRae CA, Peters S, Grossmann KS, Drenckhahn J, Michely B, Sasse-Klaassen S, Birchmeier W, Dietz R, Breithardt G, Schulze-Bahr E, Thierfelder L. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet. 2004;36(11):1162–4. https://doi.org/10.1038/ng1461.

    Article  CAS  PubMed  Google Scholar 

  34. Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, Whittock N, Leigh IM, Stevens HP, Kelsell DP. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet. 2000;9(18):2761–6.

    Article  CAS  PubMed  Google Scholar 

  35. Pilichou K, Nava A, Basso C, Beffagna G, Bauce B, Lorenzon A, Frigo G, Vettori A, Valente M, Towbin J, Thiene G, Danieli GA, Rampazzo A. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation. 2006;113(9):1171–9. https://doi.org/10.1161/CIRCULATIONAHA.105.583674.

    Article  CAS  PubMed  Google Scholar 

  36. Rampazzo A, Nava A, Malacrida S, Beffagna G, Bauce B, Rossi V, Zimbello R, Simionati B, Basso C, Thiene G, Towbin JA, Danieli GA. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2002;71(5):1200–6. https://doi.org/10.1086/344208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Syrris P, Ward D, Evans A, Asimaki A, Gandjbakhch E, Sen-Chowdhry S, McKenna WJ. Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet. 2006;79(5):978–84. https://doi.org/10.1086/509122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Basso C, Thiene G, Corrado D, Angelini A, Nava A, Valente M. Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? Circulation. 1996;94(5):983–91.

    Article  CAS  PubMed  Google Scholar 

  39. Corrado D, Link MS, Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med. 2017;376(15):1489–90. https://doi.org/10.1056/NEJMc1701400.

    Article  PubMed  Google Scholar 

  40. Corrado D, Basso C, Thiene G, McKenna WJ, Davies MJ, Fontaliran F, Nava A, Silvestri F, Blomstrom-Lundqvist C, Wlodarska EK, Fontaine G, Camerini F. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol. 1997;30(6):1512–20.

    Article  CAS  PubMed  Google Scholar 

  41. Hulot J-S, Jouven X, Empana J-P, Frank R, Fontaine G. Natural history and risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2004;110(14):1879–84. https://doi.org/10.1161/01.CIR.0000143375.93288.82.

    Article  PubMed  Google Scholar 

  42. Nava A, Bauce B, Basso C, Muriago M, Rampazzo A, Villanova C, Daliento L, Buja G, Corrado D, Danieli GA, Thiene G. Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2000;36(7):2226–33.

    Article  CAS  PubMed  Google Scholar 

  43. Jamora C, Fuchs E. Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol. 2002;4(4):E101–8. https://doi.org/10.1038/ncb0402-e101.

    Article  CAS  PubMed  Google Scholar 

  44. Patel DM, Green KJ. Desmosomes in the heart: a review of clinical and mechanistic analyses. Cell Commun Adhes. 2014;21(3):109–28. https://doi.org/10.3109/15419061.2014.906533.

    Article  CAS  PubMed  Google Scholar 

  45. Sheikh F, Ross RS, Chen J. Cell-cell connection to cardiac disease. Trends Cardiovasc Med. 2009;19(6):182–90. https://doi.org/10.1016/j.tcm.2009.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cox MGPJ, Hauer RNW. Arrhythmogenic right ventricular dysplasia/cardiomyopathy. Clin Cardiogenetics. 2011:79–96. https://doi.org/10.1007/978-1-84996-471-5_5. Available at https://link.springer.com/chapter/10.1007/978-1-84996-471-5_5.

    Google Scholar 

  47. Kushwaha SS, Fallon JT, Fuster V. Restrictive cardiomyopathy. N Engl J Med. 1997;336(4):267–76. https://doi.org/10.1056/NEJM199701233360407.

    Article  CAS  PubMed  Google Scholar 

  48. Muchtar E, Blauwet LA, Gertz MA. Restrictive cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):819–37. https://doi.org/10.1161/CIRCRESAHA.117.310982.

    Article  CAS  PubMed  Google Scholar 

  49. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I, Martin I, Nordet P. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93(5):841–2.

    Article  CAS  PubMed  Google Scholar 

  50. Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG. Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med. 2000;342(11):770–80. https://doi.org/10.1056/NEJM200003163421104.

    Article  CAS  PubMed  Google Scholar 

  51. Olivé M, Goldfarb L, Moreno D, Laforet E, Dagvadorj A, Sambuughin N, Martínez-Matos JA, Martínez F, Alió J, Farrero E, Vicart P, Ferrer I. Desmin-related myopathy: clinical, electrophysiological, radiological, neuropathological and genetic studies. J Neurol Sci. 2004;219(1–2):125–37. https://doi.org/10.1016/j.jns.2004.01.007.

    Article  CAS  PubMed  Google Scholar 

  52. Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest. 2009;119(7):1806–13. https://doi.org/10.1172/JCI38027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carlsson L, Fischer C, Sjöberg G, Robson RM, Sejersen T, Thornell L-E. Cytoskeletal derangements in hereditary myopathy with a desmin L345P mutation. Acta Neuropathol. 2002;104(5):493–504. https://doi.org/10.1007/s00401-002-0583-z.

    Article  CAS  PubMed  Google Scholar 

  54. Schröder R, Goudeau B, Simon MC, Fischer D, Eggermann T, Clemen CS, Li Z, Reimann J, Xue Z, Rudnik-Schöneborn S, Zerres K, van der Ven PFM, Fürst DO, Kunz WS, Vicart P. On noxious desmin: functional effects of a novel heterozygous desmin insertion mutation on the extrasarcomeric desmin cytoskeleton and mitochondria. Hum Mol Genet. 2003;12(6):657–69.

    Article  PubMed  CAS  Google Scholar 

  55. Arbustini E, Pasotti M, Pilotto A, Pellegrini C, Grasso M, Previtali S, Repetto A, Bellini O, Azan G, Scaffino M, Campana C, Piccolo G, Viganò M, Tavazzi L. Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. Eur J Heart Fail. 2006;8(5):477–83. https://doi.org/10.1016/j.ejheart.2005.11.003.

    Article  CAS  PubMed  Google Scholar 

  56. Goebel HH, Voit T, Warlo I, Jacobs K, Johannsen U, Müller CR. Immunohistologic and electron microscopic abnormalities of desmin and dystrophin in familial cardiomyopathy and myopathy. Rev Neurol. 1994;150(6–7):452–9.

    CAS  PubMed  Google Scholar 

  57. Goudeau B, Rodrigues-Lima F, Fischer D, Casteras-Simon M, Sambuughin N, de Visser M, Laforet P, Ferrer X, Chapon F, Sjöberg G, Kostareva A, Sejersen T, Dalakas MC, Goldfarb LG, Vicart P. Variable pathogenic potentials of mutations located in the desmin alpha-helical domain. Hum Mutat. 2006;27(9):906–13. https://doi.org/10.1002/humu.20351.

    Article  CAS  PubMed  Google Scholar 

  58. Harada H, Hayashi T, Nishi H, Kusaba K, Koga Y, Koga Y, Nonaka I, Kimura A. Phenotypic expression of a novel desmin gene mutation: hypertrophic cardiomyopathy followed by systemic myopathy. J Hum Genet. 2017; https://doi.org/10.1038/s10038-017-0383-x.

    Article  PubMed  CAS  Google Scholar 

  59. He Y, Zhang Z, Hong D, Dai Q, Jiang T. Myocardial fibrosis in desmin-related hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2010;12:68. https://doi.org/10.1186/1532-429X-12-68.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li D, Tapscoft T, Gonzalez O, Burch PE, Quiñones MA, Zoghbi WA, Hill R, Bachinski LL, Mann DL, Roberts R. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation. 1999;100(5):461–4.

    Article  CAS  PubMed  Google Scholar 

  61. Pruszczyk P, Kostera-Pruszczyk A, Shatunov A, Goudeau B, Dramiñska A, Takeda K, Sambuughin N, Vicart P, Strelkov SV, Goldfarb LG, Kamiñska A. Restrictive cardiomyopathy with atrioventricular conduction block resulting from a desmin mutation. Int J Cardiol. 2007;117(2):244–53. https://doi.org/10.1016/j.ijcard.2006.05.019.

    Article  PubMed  Google Scholar 

  62. Wang X, Osinska H, Gerdes AM, Robbins J. Desmin filaments and cardiac disease: establishing causality. J Card Fail. 2002;8(6 Suppl):S287–92. https://doi.org/10.1054/jcaf.2002.129279.

    Article  CAS  PubMed  Google Scholar 

  63. Arbustini E, Morbini P, Grasso M, Fasani R, Verga L, Bellini O, Dal Bello B, Campana C, Piccolo G, Febo O, Opasich C, Gavazzi A, Ferrans VJ. Restrictive cardiomyopathy, atrioventricular block and mild to subclinical myopathy in patients with desmin-immunoreactive material deposits. J Am Coll Cardiol. 1998;31(3):645–53.

    Article  CAS  PubMed  Google Scholar 

  64. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602.

    Article  CAS  PubMed  Google Scholar 

  65. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  66. Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. 2010;11(1):31–9. https://doi.org/10.1007/s11154-010-9131-7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Piek A, de Boer RA, Silljé HHW. The fibrosis-cell death axis in heart failure. Heart Fail Rev. 2016;21(2):199–211. https://doi.org/10.1007/s10741-016-9536-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: the fibroblast awakens. Circ Res. 2016;118(6):1021–40. https://doi.org/10.1161/CIRCRESAHA.115.306565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol. 2003;200(4):423–8. https://doi.org/10.1002/path.1437.

    Article  CAS  PubMed  Google Scholar 

  70. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123. https://doi.org/10.3389/fphar.2014.00123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsuruda T, Costello-Boerrigter LC, Burnett JC. Matrix metalloproteinases: pathways of induction by bioactive molecules. Heart Fail Rev. 2004;9(1):53–61. https://doi.org/10.1023/B:HREV.0000011394.34355.bb.

    Article  CAS  PubMed  Google Scholar 

  72. Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010;225(3):631–7. https://doi.org/10.1002/jcp.22322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Anderson KR, Sutton MG, Lie JT. Histopathological types of cardiac fibrosis in myocardial disease. J Pathol. 1979;128(2):79–85. https://doi.org/10.1002/path.1711280205.

    Article  CAS  PubMed  Google Scholar 

  74. Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol. 1989;13(7):1637–52.

    Article  CAS  PubMed  Google Scholar 

  75. Isoyama S, Nitta-Komatsubara Y. Acute and chronic adaptation to hemodynamic overload and ischemia in the aged heart. Heart Fail Rev. 2002;7(1):63–9.

    Article  PubMed  Google Scholar 

  76. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349–63. https://doi.org/10.1038/nrm809.

    Article  CAS  PubMed  Google Scholar 

  77. Rosker C, Salvarani N, Schmutz S, Grand T, Rohr S. Abolishing myofibroblast arrhythmogeneicity by pharmacological ablation of α-smooth muscle actin containing stress fibers. Circ Res. 2011;109(10):1120–31. https://doi.org/10.1161/CIRCRESAHA.111.244798.

    Article  CAS  PubMed  Google Scholar 

  78. Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther. 2009;123(2):255–78. https://doi.org/10.1016/j.pharmthera.2009.05.002.

    Article  CAS  PubMed  Google Scholar 

  79. Brown RD, Ambler SK, Mitchell MD, Long CS. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol. 2005;45:657–87. https://doi.org/10.1146/annurev.pharmtox.45.120403.095802.

    Article  CAS  PubMed  Google Scholar 

  80. Kakkar R, Lee RT. Intramyocardial fibroblast myocyte communication. Circ Res. 2010;106(1):47–57. https://doi.org/10.1161/CIRCRESAHA.109.207456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20.

    CAS  PubMed  Google Scholar 

  82. Lyu L, Wang H, Li B, Qin Q, Qi L, Nagarkatti M, Nagarkatti P, Janicki JS, Wang XL, Cui T. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. J Mol Cell Cardiol. 2015;89(Pt B):268–79. https://doi.org/10.1016/j.yjmcc.2015.10.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, Shindo T, Sano M, Otsu K, Snider P, Conway SJ, Nagai R. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010;120(1):254–65. https://doi.org/10.1172/JCI40295.

    Article  CAS  PubMed  Google Scholar 

  84. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JTR, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–4. https://doi.org/10.1038/nature07511.

    Article  CAS  PubMed  Google Scholar 

  85. Watanabe T, Otsu K, Takeda T, Yamaguchi O, Hikoso S, Kashiwase K, Higuchi Y, Taniike M, Nakai A, Matsumura Y, Nishida K, Ichijo H, Hori M. Apoptosis signal-regulating kinase 1 is involved not only in apoptosis but also in non-apoptotic cardiomyocyte death. Biochem Biophys Res Commun. 2005;333(2):562–7. https://doi.org/10.1016/j.bbrc.2005.05.151.

    Article  CAS  PubMed  Google Scholar 

  86. Yamaguchi O, Higuchi Y, Hirotani S, Kashiwase K, Nakayama H, Hikoso S, Takeda T, Watanabe T, Asahi M, Taniike M, Matsumura Y, Tsujimoto I, Hongo K, Kusakari Y, Kurihara S, Nishida K, Ichijo H, Hori M, Otsu K. Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc Natl Acad Sci U S A. 2003;100(26):15883–8. https://doi.org/10.1073/pnas.2136717100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sawaki D, Hou L, Tomida S, Sun J, Zhan H, Aizawa K, Son B-K, Kariya T, Takimoto E, Otsu K, Conway SJ, Manabe I, Komuro I, Friedman SL, Nagai R, Suzuki T. Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes. Cardiovasc Res. 2015;107(4):420–30. https://doi.org/10.1093/cvr/cvv155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51(4):600–6. https://doi.org/10.1016/j.yjmcc.2010.10.033.

    Article  CAS  PubMed  Google Scholar 

  89. Khan R, Sheppard R. Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology. 2006;118(1):10–24. https://doi.org/10.1111/j.1365-2567.2006.02336.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Agrotis A, Kalinina N, Bobik A. Transforming growth factor-beta, cell signaling and cardiovascular disorders. Curr Vasc Pharmacol. 2005;3(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  91. Li G, Borger MA, Williams WG, Weisel RD, Mickle DAG, Wigle ED, Li R-K. Regional overexpression of insulin-like growth factor-I and transforming growth factor-beta1 in the myocardium of patients with hypertrophic obstructive cardiomyopathy. J Thorac Cardiovasc Surg. 2002;123(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  92. Sanderson JE, Lai KB, Shum IO, Wei S, Chow LT. Transforming growth factor-beta(1) expression in dilated cardiomyopathy. Heart. 2001;86(6):701–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bujak M, Frangogiannis NG. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74(2):184–95. https://doi.org/10.1016/j.cardiores.2006.10.002.

    Article  CAS  PubMed  Google Scholar 

  94. Fava RA, Olsen NJ, Postlethwaite AE, Broadley KN, Davidson JM, Nanney LB, Lucas C, Townes AS. Transforming growth factor beta 1 (TGF-beta 1) induced neutrophil recruitment to synovial tissues: implications for TGF-beta-driven synovial inflammation and hyperplasia. J Exp Med. 1991;173(5):1121–32.

    Article  CAS  PubMed  Google Scholar 

  95. Wahl SM, Hunt DA, Wakefield LM, McCartney-Francis N, Wahl LM, Roberts AB, Sporn MB. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci U S A. 1987;84(16):5788–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab. 2000;71(1–2):418–35. https://doi.org/10.1006/mgme.2000.3032.

    Article  CAS  PubMed  Google Scholar 

  97. Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, Chin MT, Topper JN, Perrella MA, Lee ME. Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem. 2000;275(47):36653–8. https://doi.org/10.1074/jbc.M004536200.

    Article  CAS  PubMed  Google Scholar 

  98. Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122(1):103–11.

    Article  PubMed  Google Scholar 

  99. Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res. 2004;63(3):423–32. https://doi.org/10.1016/j.cardiores.2004.04.030.

    Article  CAS  PubMed  Google Scholar 

  100. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685–700.

    Article  CAS  PubMed  Google Scholar 

  101. Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci. 2004;35(2):83–92. https://doi.org/10.1016/j.jdermsci.2003.12.006.

    Article  CAS  PubMed  Google Scholar 

  102. Costanza B, Umelo IA, Bellier J, Castronovo V, Turtoi A. Stromal modulators of TGF-β in cancer. J Clin Med. 2017;6(1):7. https://doi.org/10.3390/jcm6010007.

    Article  CAS  PubMed Central  Google Scholar 

  103. Lawler S, Feng XH, Chen RH, Maruoka EM, Turck CW, Griswold-Prenner I, Derynck R. The type II transforming growth factor-beta receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. J Biol Chem. 1997;272(23):14850–9.

    Article  CAS  PubMed  Google Scholar 

  104. Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM, Derynck R. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 2007;26(17):3957–67. https://doi.org/10.1038/sj.emboj.7601818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mulder KM, Morris SL. Activation of P21ras by transforming growth factor beta in epithelial cells. J Biol Chem. 1992;267(8):5029–31.

    CAS  PubMed  Google Scholar 

  106. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19(1):128–39. https://doi.org/10.1038/cr.2008.328.

    Article  CAS  PubMed  Google Scholar 

  107. Courcelles M, Frémin C, Voisin L, Lemieux S, Meloche S, Thibault P. Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions. Mol Syst Biol. 2013;9:669. https://doi.org/10.1038/msb.2013.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin C-H, Landström M. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol. 2008;10(10):1199–207. https://doi.org/10.1038/ncb1780.

    Article  CAS  PubMed  Google Scholar 

  109. Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE. TRAF6 mediates Smad-independent activation of JNK and P38 by TGF-beta. Mol Cell. 2008;31(6):918–24. https://doi.org/10.1016/j.molcel.2008.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Haglund K, Dikic I. Ubiquitylation and cell signaling. EMBO J. 2005;24(19):3353–9. https://doi.org/10.1038/sj.emboj.7600808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang YE. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 2017;9(2). https://doi.org/10.1101/cshperspect.a022129.

    Article  CAS  Google Scholar 

  112. Frigo DE, Tang Y, Beckman BS, Scandurro AB, Alam J, Burow ME, McLachlan JA. Mechanism of AP-1-mediated gene expression by select organochlorines through the P38 MAPK pathway. Carcinogenesis. 2004;25(2):249–61. https://doi.org/10.1093/carcin/bgh009.

    Article  CAS  PubMed  Google Scholar 

  113. Grynberg K, Ma FY, Nikolic-Paterson DJ. The JNK signaling pathway in renal fibrosis. Front Physiol. 2017;8:829. https://doi.org/10.3389/fphys.2017.00829.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E. Involvement of the P38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem. 1999;274(38):27161–7.

    Article  CAS  PubMed  Google Scholar 

  115. Gui T, Sun Y, Shimokado A, Muragaki Y. The roles of mitogen-activated protein kinase pathways in TGF-β-induced epithelial-mesenchymal transition. J Sig Transduct. 2012;2012:289243. https://doi.org/10.1155/2012/289243.

    Article  CAS  Google Scholar 

  116. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000;275(47):36803–10. https://doi.org/10.1074/jbc.M005912200.

    Article  CAS  PubMed  Google Scholar 

  117. Chiang GG, Abraham RT. Phosphorylation of mammalian target of rapamycin (MTOR) at Ser-2448 is mediated by P70S6 kinase. J Biol Chem. 2005;280(27):25485–90. https://doi.org/10.1074/jbc.M501707200.

    Article  CAS  PubMed  Google Scholar 

  118. Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the MTOR pathway. J Cell Biol. 2007;178(3):437–51. https://doi.org/10.1083/jcb.200611146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shegogue D, Trojanowska M. Mammalian target of rapamycin positively regulates collagen type I production via a phosphatidylinositol 3-kinase-independent pathway. J Biol Chem. 2004;279(22):23166–75. https://doi.org/10.1074/jbc.M401238200.

    Article  CAS  PubMed  Google Scholar 

  120. Connolly EC, Freimuth J, Akhurst RJ. Complexities of TGF-β targeted cancer therapy. Int J Biol Sci. 2012;8(7):964–78. https://doi.org/10.7150/ijbs.4564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69. https://doi.org/10.1146/annurev.cellbio.21.020604.150721.

    Article  CAS  PubMed  Google Scholar 

  122. Lee J, Moon H-J, Lee J-M, Joo C-K. Smad3 regulates rho signaling via NET1 in the transforming growth factor-beta-induced epithelial-mesenchymal transition of human retinal pigment epithelial cells. J Biol Chem. 2010;285(34):26618–27. https://doi.org/10.1074/jbc.M109.073155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ozdamar B, Bose R, Barrios-Rodiles M, Wang H-R, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science (New York, NY). 2005;307(5715):1603–9. https://doi.org/10.1126/science.1105718.

    Article  CAS  Google Scholar 

  124. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL. High-throughput mapping of a dynamic signaling network in mammalian cells. Science (New York, NY). 2005;307(5715):1621–5. https://doi.org/10.1126/science.1105776.

    Article  CAS  Google Scholar 

  125. Stamos JL, Weis WI. The β-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5(1):a007898. https://doi.org/10.1101/cshperspect.a007898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108(6):837–47.

    Article  CAS  PubMed  Google Scholar 

  127. Piersma B, Bank RA, Boersema M. Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front Med. 2015;2:59. https://doi.org/10.3389/fmed.2015.00059.

    Article  Google Scholar 

  128. Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C. Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature. 2005;438(7069):867–72. https://doi.org/10.1038/nature04170.

    Article  CAS  PubMed  Google Scholar 

  129. Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005;438(7069):873–7. https://doi.org/10.1038/nature04185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li VSW, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJR, Maurice MM, Mahmoudi T, Clevers H. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell. 2012;149(6):1245–56. https://doi.org/10.1016/j.cell.2012.05.002.

    Article  CAS  PubMed  Google Scholar 

  131. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382(6592):638–42. https://doi.org/10.1038/382638a0.

    Article  CAS  PubMed  Google Scholar 

  132. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destrée O, Clevers H. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 1996;86(3):391–9.

    Article  CAS  PubMed  Google Scholar 

  133. Duan J, Gherghe C, Liu D, Hamlett E, Srikantha L, Rodgers L, Regan JN, Rojas M, Willis M, Leask A, Majesky M, Deb A. Wnt1/bcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J. 2012;31(2):429–42. https://doi.org/10.1038/emboj.2011.418.

    Article  CAS  PubMed  Google Scholar 

  134. Kobayashi K, Luo M, Zhang Y, Wilkes DC, Ge G, Grieskamp T, Yamada C, Liu T-C, Huang G, Basson CT, Kispert A, Greenspan DS, Sato TN. Secreted frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol. 2009;11(1):46–55. https://doi.org/10.1038/ncb1811.

    Article  CAS  PubMed  Google Scholar 

  135. Lam AP, Flozak AS, Russell S, Wei J, Jain M, Mutlu GM, Budinger GRS, Feghali-Bostwick CA, Varga J, Gottardi CJ. Nuclear β-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am J Respir Cell Mol Biol. 2011;45(5):915–22. https://doi.org/10.1165/rcmb.2010-0113OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Surendran K, McCaul SP, Simon TC. A role for Wnt-4 in renal fibrosis. Am J Physiol Renal Physiol. 2002;282(3):F431–41. https://doi.org/10.1152/ajprenal.0009.2001.

    Article  CAS  PubMed  Google Scholar 

  137. Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H, Sadowski A, Riener M-O, MacDougald OA, Distler O, Schett G, Distler JHW. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun. 2012;3:735. https://doi.org/10.1038/ncomms1734.

    Article  CAS  PubMed  Google Scholar 

  138. Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, Sugano S, Akiyama T. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene. 2004;23(52):8520–6. https://doi.org/10.1038/sj.onc.1207892.

    Article  CAS  PubMed  Google Scholar 

  139. Gori F, Lerner U, Ohlsson C, Baron R. A new WNT on the bone: WNT16, cortical bone thickness, porosity and fractures. BoneKEy Rep. 2015;4:669. https://doi.org/10.1038/bonekey.2015.36. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432781/.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai Z-C, Guan K-L. Inactivation of YAP oncoprotein by the hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61. https://doi.org/10.1101/gad.1602907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu C-Y, Zha Z-Y, Zhou X, Zhang H, Huang W, Zhao D, Li T, Chan SW, Lim CJ, Hong W, Zhao S, Xiong Y, Lei Q-Y, Guan K-L. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem. 2010;285(48):37159–69. https://doi.org/10.1074/jbc.M110.152942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–83. https://doi.org/10.1038/nature10137.

    Article  CAS  PubMed  Google Scholar 

  143. Sansores-Garcia L, Bossuyt W, Wada K-I, Yonemura S, Tao C, Sasaki H, Halder G. Modulating F-actin organization induces organ growth by affecting the hippo pathway. EMBO J. 2011;30(12):2325–35. https://doi.org/10.1038/emboj.2011.157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liu F, Lagares D, Choi KM, Stopfer L, Marinković A, Vrbanac V, Probst CK, Hiemer SE, Sisson TH, Horowitz JC, Rosas IO, Fredenburgh LE, Feghali-Bostwick C, Varelas X, Tager AM, Tschumperlin DJ. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol. 2015;308(4):L344–57. https://doi.org/10.1152/ajplung.00300.2014.

    Article  CAS  PubMed  Google Scholar 

  145. Mannaerts I, Leite SB, Verhulst S, Claerhout S, Eysackers N, Thoen LFR, Hoorens A, Reynaert H, Halder G, van Grunsven LA. The hippo pathway effector YAP controls mouse hepatic stellate cell activation. J Hepatol. 2015;63(3):679–88. https://doi.org/10.1016/j.jhep.2015.04.011.

    Article  CAS  PubMed  Google Scholar 

  146. Ferrigno O, Lallemand F, Verrecchia F, L’Hoste S, Camonis J, Atfi A, Mauviel A. Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene. 2002;21(32):4879–84. https://doi.org/10.1038/sj.onc.1205623.

    Article  CAS  PubMed  Google Scholar 

  147. Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 2008;10(7):837–48. https://doi.org/10.1038/ncb1748.

    Article  CAS  PubMed  Google Scholar 

  148. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, Fassina A, Cordenonsi M, Piccolo S. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158(1):157–70. https://doi.org/10.1016/j.cell.2014.06.013.

    Article  CAS  PubMed  Google Scholar 

  149. Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front Plant Sci. 2014;5:190. https://doi.org/10.3389/fpls.2014.00190.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ross FA, MacKintosh C, Hardie DG. AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS J. 2016;283(16):2987–3001. https://doi.org/10.1111/febs.13698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li J, Coven DL, Miller EJ, Hu X, Young ME, Carling D, Sinusas AJ, Young LH. Activation of AMPK alpha- and gamma-isoform complexes in the intact ischemic rat heart. Am J Physiol Heart Circ Physiol. 2006;291(4):H1927–34. https://doi.org/10.1152/ajpheart.00251.2006.

    Article  CAS  PubMed  Google Scholar 

  152. Hardie DG, Ashford MLJ. AMPK: regulating energy balance at the cellular and whole body levels. Physiology (Bethesda). 2014;29(2):99–107. https://doi.org/10.1152/physiol.00050.2013.

    Article  CAS  Google Scholar 

  153. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121–35. https://doi.org/10.1038/nrm.2017.95.

    Article  CAS  PubMed  Google Scholar 

  154. Hopkins TA, Dyck JRB, Lopaschuk GD. AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart. Biochem Soc Trans. 2003;31(Pt 1):207–12.

    Article  CAS  PubMed  Google Scholar 

  155. Bando H, Atsumi T, Nishio T, Niwa H, Mishima S, Shimizu C, Yoshioka N, Bucala R, Koike T. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin Cancer Res. 2005;11(16):5784–92. https://doi.org/10.1158/1078-0432.CCR-05-0149.

    Article  CAS  PubMed  Google Scholar 

  156. Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.

    Article  CAS  PubMed  Google Scholar 

  157. Horman S, Beauloye C, Vanoverschelde J-L, Bertrand L. AMP-activated protein kinase in the control of cardiac metabolism and remodeling. Curr Heart Fail Rep. 2012;9(3):164–73. https://doi.org/10.1007/s11897-012-0102-z.

    Article  CAS  PubMed  Google Scholar 

  158. Zarrinpashneh E, Carjaval K, Beauloye C, Ginion A, Mateo P, Pouleur A-C, Horman S, Vaulont S, Hoerter J, Viollet B, Hue L, Vanoverschelde J-L, Bertrand L. Role of the alpha2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia. Am J Physiol Heart Circ Physiol. 2006;291(6):H2875–83. https://doi.org/10.1152/ajpheart.01032.2005.

    Article  CAS  PubMed  Google Scholar 

  159. Zhang P, Hu X, Xu X, Fassett J, Zhu G, Viollet B, Xu W, Wiczer B, Bernlohr DA, Bache RJ, Chen Y. AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice. Hypertension (Dallas, Tex.: 1979). 2008;52(5):918–24. https://doi.org/10.1161/HYPERTENSIONAHA.108.114702.

    Article  CAS  Google Scholar 

  160. Kato MF, Shibata R, Obata K, Miyachi M, Yazawa H, Tsuboi K, Yamada T, Nishizawa T, Noda A, Cheng XW, Murate T, Koike Y, Murohara T, Yokota M, Nagata K. Pioglitazone attenuates cardiac hypertrophy in rats with salt-sensitive hypertension: role of activation of AMP-activated protein kinase and inhibition of Akt. J Hypertens. 2008;26(8):1669–76. https://doi.org/10.1097/HJH.0b013e328302f0f7.

    Article  CAS  PubMed  Google Scholar 

  161. Sakamoto A, Hongo M, Furuta K, Saito K, Nagai R, Ishizaka N. Pioglitazone ameliorates systolic and diastolic cardiac dysfunction in rat model of angiotensin II-induced hypertension. Int J Cardiol. 2013;167(2):409–15. https://doi.org/10.1016/j.ijcard.2012.01.007.

    Article  PubMed  Google Scholar 

  162. Cieslik KA, Taffet GE, Crawford JR, Trial J, Mejia Osuna P, Entman ML. AICAR-dependent AMPK activation improves scar formation in the aged heart in a murine model of reperfused myocardial infarction. J Mol Cell Cardiol. 2013;63:26–36. https://doi.org/10.1016/j.yjmcc.2013.07.005.

    Article  CAS  PubMed  Google Scholar 

  163. Mishra R, Cool BL, Laderoute KR, Foretz M, Viollet B, Simonson MS. AMP-activated protein kinase inhibits transforming growth factor-beta-induced Smad3-dependent transcription and myofibroblast transdifferentiation. J Biol Chem. 2008;283(16):10461–9. https://doi.org/10.1074/jbc.M800902200.

    Article  CAS  PubMed  Google Scholar 

  164. Lim J-Y, Oh M-A, Kim WH, Sohn H-Y, Park SI. AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator P300. J Cell Physiol. 2012;227(3):1081–9. https://doi.org/10.1002/jcp.22824.

    Article  CAS  PubMed  Google Scholar 

  165. Qi H, Liu Y, Li S, Chen Y, Li L, Cao Y, E M, Shi P, Song C, Li B, Sun H. Activation of AMPK attenuated cardiac fibrosis by inhibiting CDK2 via P21/P27 and MiR-29 family pathways in rats. Mol Ther Nucleic Acids. 2017;8:277–90. https://doi.org/10.1016/j.omtn.2017.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Campbell SE, Katwa LC. Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol. 1997;29(7):1947–58. https://doi.org/10.1006/jmcc.1997.0435.

    Article  CAS  PubMed  Google Scholar 

  167. Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res. 1998;40(2):352–63.

    Article  CAS  PubMed  Google Scholar 

  168. Schultz JEJ, Witt SA, Glascock BJ, Nieman ML, Reiser PJ, Nix SL, Kimball TR, Doetschman T. TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clin Invest. 2002;109(6):787–96. https://doi.org/10.1172/JCI14190.

    Article  CAS  PubMed Central  Google Scholar 

  169. Wenzel S, Taimor G, Piper HM, Schlüter KD. Redox-sensitive intermediates mediate angiotensin II-induced P38 MAP kinase activation, AP-1 binding activity, and TGF-beta expression in adult ventricular cardiomyocytes. FASEB J. 2001;15(12):2291–3. https://doi.org/10.1096/fj.00-0827fje.

    Article  CAS  PubMed  Google Scholar 

  170. Ichihara S, Senbonmatsu T, Price E, Ichiki T, Gaffney FA, Inagami T. Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation. 2001;104(3):346–51.

    Article  CAS  PubMed  Google Scholar 

  171. Crawford DC, Chobanian AV, Brecher P. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Circ Res. 1994;74(4):727–39.

    Article  CAS  PubMed  Google Scholar 

  172. Tomita H, Egashira K, Ohara Y, Takemoto M, Koyanagi M, Katoh M, Yamamoto H, Tamaki K, Shimokawa H, Takeshita A. Early induction of transforming growth factor-beta via angiotensin II type 1 receptors contributes to cardiac fibrosis induced by long-term blockade of nitric oxide synthesis in rats. Hypertension (Dallas, Tex: 1979). 1998;32(2):273–9.

    Article  CAS  Google Scholar 

  173. Rodríguez-Vita J, Sánchez-López E, Esteban V, Rupérez M, Egido J, Ruiz-Ortega M. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation. 2005;111(19):2509–17. https://doi.org/10.1161/01.CIR.0000165133.84978.E2.

    Article  CAS  PubMed  Google Scholar 

  174. Yamakawa T, Tanaka S, Numaguchi K, Yamakawa Y, Motley ED, Ichihara S, Inagami T. Involvement of rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension (Dallas, Tex.: 1979). 2000;35(1 Pt 2):313–8.

    Article  CAS  Google Scholar 

  175. Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 1997;8(3):171–9.

    Article  CAS  PubMed  Google Scholar 

  176. Rupérez M, Sánchez-López E, Blanco-Colio LM, Esteban V, Rodríguez-Vita J, Plaza JJ, Egido J, Ruiz-Ortega M. The Rho-kinase pathway regulates angiotensin II-induced renal damage. Kidney Int Suppl. 2005;99:S39–45. https://doi.org/10.1111/j.1523-1755.2005.09908.x.

    Article  Google Scholar 

  177. Wei C, Kim I-K, Kumar S, Jayasinghe S, Hong N, Castoldi G, Catalucci D, Jones WK, Gupta S. NF-ΚB mediated MiR-26a regulation in cardiac fibrosis. J Cell Physiol. 2013;228(7):1433–42. https://doi.org/10.1002/jcp.24296.

    Article  CAS  PubMed  Google Scholar 

  178. Czuwara-Ladykowska J, Shirasaki F, Jackers P, Watson DK, Trojanowska M. Fli-1 inhibits collagen type I production in dermal fibroblasts via an Sp1-dependent pathway. J Biol Chem. 2001;276(24):20839–48. https://doi.org/10.1074/jbc.M010133200.

    Article  CAS  PubMed  Google Scholar 

  179. Elkareh J, Kennedy DJ, Yashaswi B, Vetteth S, Shidyak A, Kim EGR, Smaili S, Periyasamy SM, Hariri IM, Fedorova L, Liu J, Wu L, Kahaleh MB, Xie Z, Malhotra D, Fedorova OV, Kashkin VA, Bagrov AY, Shapiro JI. Marinobufagenin stimulates fibroblast collagen production and causes fibrosis in experimental uremic cardiomyopathy. Hypertension (Dallas, Tex.: 1979). 2007;49(1):215–24. https://doi.org/10.1161/01.HYP.0000252409.36927.05.

    Article  CAS  Google Scholar 

  180. Kennedy DJ, Vetteth S, Periyasamy SM, Kanj M, Fedorova L, Khouri S, Kahaleh MB, Xie Z, Malhotra D, Kolodkin NI, Lakatta EG, Fedorova OV, Bagrov AY, Shapiro JI. Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension (Dallas, Tex.: 1979). 2006;47(3):488–95. https://doi.org/10.1161/01.HYP.0000202594.82271.92.

    Article  CAS  Google Scholar 

  181. Braunwald E, Klocke FJ. Digitalis. Annu Rev Med. 1965;16:371–86. https://doi.org/10.1146/annurev.me.16.020165.002103.

    Article  CAS  PubMed  Google Scholar 

  182. Bagrov AY, Fedorova OV, Dmitrieva RI, French AW, Anderson DE. Plasma marinobufagenin-like and ouabain-like immunoreactivity during saline volume expansion in anesthetized dogs. Cardiovasc Res. 1996;31(2):296–305.

    Article  CAS  PubMed  Google Scholar 

  183. Fedorova OV, Anderson DE, Bagrov AY. Plasma marinobufagenin-like and ouabain-like immunoreactivity in adrenocorticotropin-treated rats. Am J Hypertens. 1998;11(7):796–802.

    Article  CAS  PubMed  Google Scholar 

  184. Hamlyn JM, Lu ZR, Manunta P, Ludens JH, Kimura K, Shah JR, Laredo J, Hamilton JP, Hamilton MJ, Hamilton BP. Observations on the nature, biosynthesis, secretion and significance of endogenous ouabain. Clin Exp Hypertens (New York, NY: 1993). 1998;20(5–6):523–33.

    CAS  Google Scholar 

  185. Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs. 2007;7(3):173–89.

    Article  CAS  PubMed  Google Scholar 

  186. Crabtree GR. Calcium, calcineurin, and the control of transcription. J Biol Chem. 2001;276(4):2313–6. https://doi.org/10.1074/jbc.R000024200.

    Article  CAS  PubMed  Google Scholar 

  187. Molkentin JD. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res. 2004;63(3):467–75. https://doi.org/10.1016/j.cardiores.2004.01.021.

    Article  CAS  PubMed  Google Scholar 

  188. Crabtree GR. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell. 1999;96(5):611–4.

    Article  CAS  PubMed  Google Scholar 

  189. Klee CB, Ren H, Wang X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem. 1998;273(22):13367–70.

    Article  CAS  PubMed  Google Scholar 

  190. Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003;17(18):2205–32. https://doi.org/10.1101/gad.1102703.

    Article  CAS  PubMed  Google Scholar 

  191. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93(2):215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wilkins BJ, De Windt LJ, Bueno OF, Braz JC, Glascock BJ, Kimball TF, Molkentin JD. Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Mol Cell Biol. 2002;22(21):7603–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. De Windt LJ, Lim HW, Haq S, Force T, Molkentin JD. Calcineurin promotes protein kinase C and C-Jun NH2-terminal kinase activation in the heart. Cross-talk between cardiac hypertrophic signaling pathways. J Biol Chem. 2000;275(18):13571–9.

    Article  PubMed  Google Scholar 

  194. Ichida M, Finkel T. Ras regulates NFAT3 activity in cardiac myocytes. J Biol Chem. 2001;276(5):3524–30. https://doi.org/10.1074/jbc.M004275200.

    Article  CAS  PubMed  Google Scholar 

  195. Porter CM, Havens MA, Clipstone NA. Identification of amino acid residues and protein kinases involved in the regulation of NFATc subcellular localization. J Biol Chem. 2000;275(5):3543–51.

    Article  CAS  PubMed  Google Scholar 

  196. Chow CW, Rincón M, Cavanagh J, Dickens M, Davis RJ. Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science (New York, NY). 1997;278(5343):1638–41.

    Article  CAS  Google Scholar 

  197. Yang TTC, Xiong Q, Enslen H, Davis RJ, Chow C-W. Phosphorylation of NFATc4 by P38 mitogen-activated protein kinases. Mol Cell Biol. 2002;22(11):3892–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Gómez del Arco P, Martínez-Martínez S, Maldonado JL, Ortega-Pérez I, Redondo JM. A role for the P38 MAP kinase pathway in the nuclear shuttling of NFATp. J Biol Chem. 2000;275(18):13872–8.

    Article  PubMed  Google Scholar 

  199. Faul C, Amaral AP, Oskouei B, Hu M-C, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-O M, Kusek JW, Keane MG, Wolf M. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–408. https://doi.org/10.1172/JCI46122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hao H, Li X, Li Q, Lin H, Chen Z, Xie J, Xuan W, Liao W, Bin J, Huang X, Kitakaze M, Liao Y. FGF23 promotes myocardial fibrosis in mice through activation of β-catenin. Oncotarget. 2016;7(40):64649–64. https://doi.org/10.18632/oncotarget.11623.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev. 2003;83(3):731–801. https://doi.org/10.1152/physrev.00029.2002.

    Article  CAS  PubMed  Google Scholar 

  202. Letavernier E, Zafrani L, Perez J, Letavernier B, Haymann J-P, Baud L. The role of calpains in myocardial remodelling and heart failure. Cardiovasc Res. 2012;96(1):38–45. https://doi.org/10.1093/cvr/cvs099.

    Article  CAS  PubMed  Google Scholar 

  203. Freund C, Schmidt-Ullrich R, Baurand A, Dunger S, Schneider W, Loser P, El-Jamali A, Dietz R, Scheidereit C, Bergmann MW. Requirement of nuclear factor-kappaB in angiotensin II- and isoproterenol-induced cardiac hypertrophy in vivo. Circulation. 2005;111(18):2319–25. https://doi.org/10.1161/01.CIR.0000164237.58200.5A.

    Article  CAS  PubMed  Google Scholar 

  204. Burkard N, Becher J, Heindl C, Neyses L, Schuh K, Ritter O. Targeted proteolysis sustains calcineurin activation. Circulation. 2005;111(8):1045–53. https://doi.org/10.1161/01.CIR.0000156458.80515.F7.

    Article  CAS  PubMed  Google Scholar 

  205. Abe M, Oda N, Sato Y. Cell-associated activation of latent transforming growth factor-beta by calpain. J Cell Physiol. 1998;174(2):186–93. https://doi.org/10.1002/(SICI)1097-4652(199802)174:2<186::AID-JCP6>3.0.CO;2-K.

    Article  CAS  PubMed  Google Scholar 

  206. Yang K, Zhang T-P, Tian C, Jia L-X, Du J, Li H-H. Carboxyl terminus of heat shock protein 70-interacting protein inhibits angiotensin II-induced cardiac remodeling. Am J Hypertens. 2012;25(9):994–1001. https://doi.org/10.1038/ajh.2012.74.

    Article  CAS  PubMed  Google Scholar 

  207. Schisler JC, Rubel CE, Zhang C, Lockyer P, Cyr DM, Patterson C. CHIP protects against cardiac pressure overload through regulation of AMPK. J Clin Invest. 2013;123(8):3588–99. https://doi.org/10.1172/JCI69080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Li H-H, Kedar V, Zhang C, McDonough H, Arya R, Wang D-Z, Patterson C. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest. 2004;114(8):1058–71. https://doi.org/10.1172/JCI22220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Li H-H, Willis MS, Lockyer P, Miller N, McDonough H, Glass DJ, Patterson C. Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of forkhead proteins. J Clin Invest. 2007;117(11):3211–23. https://doi.org/10.1172/JCI31757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev. 2006;20(24):3347–65. https://doi.org/10.1101/gad.1492806.

    Article  CAS  PubMed  Google Scholar 

  211. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell. 1999;96(6):857–68.

    Article  CAS  PubMed  Google Scholar 

  212. Chen SN, Czernuszewicz G, Tan Y, Lombardi R, Jin J, Willerson JT, Marian AJ. Human molecular genetic and functional studies identify TRIM63, encoding muscle RING finger protein 1, as a novel gene for human hypertrophic cardiomyopathy. Circ Res. 2012;111(7):907–19. https://doi.org/10.1161/CIRCRESAHA.112.270207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Su M, Wang J, Kang L, Wang Y, Zou Y, Feng X, Wang D, Ahmad F, Zhou X, Hui R, Song L. Rare variants in genes encoding MuRF1 and MuRF2 are modifiers of hypertrophic cardiomyopathy. Int J Mol Sci. 2014;15(6):9302–13. https://doi.org/10.3390/ijms15069302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Mearini G, Gedicke C, Schlossarek S, Witt CC, Krämer E, Cao P, Gomes MD, Lecker SH, Labeit S, Willis MS, Eschenhagen T, Carrier L. Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms. Cardiovasc Res. 2010;85(2):357–66. https://doi.org/10.1093/cvr/cvp348.

    Article  CAS  PubMed  Google Scholar 

  215. Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, Gautel M, Labeit S, James M, Beckmann J, Weissenbach J, Vosberg HP, Fiszman M, Komajda M, Schwartz K. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):438–40. https://doi.org/10.1038/ng1295-438.

    Article  CAS  PubMed  Google Scholar 

  216. Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG, Seidman CE. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):434–7. https://doi.org/10.1038/ng1295-434.

    Article  CAS  PubMed  Google Scholar 

  217. Duerrschmid C, Crawford JR, Reineke E, Taffet GE, Trial J, Entman ML, Haudek SB. TNF receptor 1 signaling is critically involved in mediating angiotensin-II-induced cardiac fibrosis. J Mol Cell Cardiol. 2013;57:59–67. https://doi.org/10.1016/j.yjmcc.2013.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Papathanasiou S, Rickelt S, Soriano ME, Schips TG, Maier HJ, Davos CH, Varela A, Kaklamanis L, Mann DL, Capetanaki Y. Tumor necrosis factor-α confers cardioprotection through ectopic expression of keratins K8 and K18. Nat Med. 2015;21(9):1076–84. https://doi.org/10.1038/nm.3925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Schulz R, Heusch G. Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation. 2009;119(10):1355–7. https://doi.org/10.1161/CIRCULATIONAHA.108.846105.

    Article  PubMed  Google Scholar 

  220. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001;11(9):372–7.

    Article  CAS  PubMed  Google Scholar 

  221. Yang YM, Seki E. TNFα in liver fibrosis. Curr Pathobiol Rep. 2015;3(4):253–61. https://doi.org/10.1007/s40139-015-0093-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Argulian E, Messerli FH, Aziz EF, Winson G, Agarwal V, Kaddaha F, Kim B, Sherrid MV. Antihypertensive therapy in hypertrophic cardiomyopathy. Am J Cardiol. 2013;111(7):1040–5. https://doi.org/10.1016/j.amjcard.2012.12.026.

    Article  PubMed  Google Scholar 

  223. Artz G, Wynne J. Restrictive cardiomyopathy. Curr Treat Options Cardiovasc Med. 2000;2(5):431–8.

    Article  CAS  PubMed  Google Scholar 

  224. Haugaa KH, Bundgaard H, Edvardsen T, Eschen O, Gilljam T, Hansen J, Jensen HK, Platonov PG, Svensson A, Svendsen JH. Management of patients with arrhythmogenic right ventricular cardiomyopathy in the Nordic countries. Scand Cardiovasc J SCJ. 2015;49(6):299–307. https://doi.org/10.3109/14017431.2015.1086017.

    Article  CAS  PubMed  Google Scholar 

  225. Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet (London, England). 2017;390(10092):400–14. https://doi.org/10.1016/S0140-6736(16)31713-5.

    Article  CAS  Google Scholar 

  226. Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102(12):1388–93.

    Article  CAS  PubMed  Google Scholar 

  227. Kosmala W, Przewlocka-Kosmala M, Szczepanik-Osadnik H, Mysiak A, O’Moore-Sullivan T, Marwick TH. A randomized study of the beneficial effects of aldosterone antagonism on LV function, structure, and fibrosis markers in metabolic syndrome. JACC Cardiovasc Imaging. 2011;4(12):1239–49. https://doi.org/10.1016/j.jcmg.2011.08.014.

    Article  PubMed  Google Scholar 

  228. López B, Querejeta R, Varo N, González A, Larman M, Martínez Ubago JL, Díez J. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation. 2001;104(3):286–91.

    Article  PubMed  Google Scholar 

  229. Mak GJ, Ledwidge MT, Watson CJ, Phelan DM, Dawkins IR, Murphy NF, Patle AK, Baugh JA, McDonald KM. Natural history of markers of collagen turnover in patients with early diastolic dysfunction and impact of eplerenone. J Am Coll Cardiol. 2009;54(18):1674–82. https://doi.org/10.1016/j.jacc.2009.08.021.

    Article  CAS  PubMed  Google Scholar 

  230. Watanabe R, Suzuki J-I, Wakayama K, Maejima Y, Shimamura M, Koriyama H, Nakagami H, Kumagai H, Ikeda Y, Akazawa H, Morishita R, Komuro I, Isobe M. A peptide vaccine targeting angiotensin II attenuates the cardiac dysfunction induced by myocardial infarction. Sci Rep. 2017;7:43920. https://doi.org/10.1038/srep43920.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Kurtoglu E, Balta S, Karakus Y, Yasar E, Cuglan B, Kaplan O, Gozubuyuk G. Ivabradine improves heart rate variability in patients with nonischemic dilated cardiomyopathy. Arq Bras Cardiol. 2014;103(4):308–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Rohm I, Kretzschmar D, Pistulli R, Franz M, Schulze PC, Stumpf C, Yilmaz A. Impact of ivabradine on inflammatory markers in chronic heart failure. J Immunol Res. 2016;2016:6949320. https://doi.org/10.1155/2016/6949320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Yue-Chun L, Guang-Yi C, Li-Sha G, Chao X, Xinqiao T, Cong L, Xiao-Ya D, Xiangjun Y. The protective effects of ivabradine in preventing progression from viral myocarditis to dilated cardiomyopathy. Front Pharmacol. 2016;7:408. https://doi.org/10.3389/fphar.2016.00408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Szardien S, Nef HM, Voss S, Troidl C, Liebetrau C, Hoffmann J, Rauch M, Mayer K, Kimmich K, Rolf A, Rixe J, Troidl K, Kojonazarov B, Schermuly RT, Kostin S, Elsässer A, Hamm CW, Möllmann H. Regression of cardiac hypertrophy by granulocyte colony-stimulating factor-stimulated interleukin-1β synthesis. Eur Heart J. 2012;33(5):595–605. https://doi.org/10.1093/eurheartj/ehr434.

    Article  CAS  PubMed  Google Scholar 

  235. Hamid T, Gu Y, Ortines RV, Bhattacharya C, Wang G, Xuan Y-T, Prabhu SD. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-KappaB and inflammatory activation. Circulation. 2009;119(10):1386–97. https://doi.org/10.1161/CIRCULATIONAHA.108.802918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Schafer S, Viswanathan S, Widjaja AA, Lim W-W, Moreno-Moral A, DeLaughter DM, Ng B, Patone G, Chow K, Khin E, Tan J, Chothani SP, Ye L, Rackham OJL, Ko NSJ, Sahib NE, Pua CJ, Zhen NTG, Xie C, Wang M, Maatz H, Lim S, Saar K, Blachut S, Petretto E, Schmidt S, Putoczki T, Guimarães-Camboa N, Wakimoto H, van Heesch S, Sigmundsson K, Lim SL, Soon JL, Chao VTT, Chua YL, Tan TE, Evans SM, Loh YJ, Jamal MH, Ong KK, Chua KC, Ong B-H, Chakaramakkil MJ, Seidman JG, Seidman CE, Hubner N, Sin KYK, Cook SA. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552(7683):110–5. https://doi.org/10.1038/nature24676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Obana M, Maeda M, Takeda K, Hayama A, Mohri T, Yamashita T, Nakaoka Y, Komuro I, Takeda K, Matsumiya G, Azuma J, Fujio Y. Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation. 2010;121(5):684–91. https://doi.org/10.1161/CIRCULATIONAHA.109.893677.

    Article  CAS  PubMed  Google Scholar 

  238. Margaritopoulos GA, Vasarmidi E, Antoniou KM. Pirfenidone in the treatment of idiopathic pulmonary fibrosis: an evidence-based review of its place in therapy. Core Evid. 2016;11:11–22. https://doi.org/10.2147/CE.S76549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Yamagami K, Oka T, Wang Q, Ishizu T, Lee J-K, Miwa K, Akazawa H, Naito AT, Sakata Y, Komuro I. Pirfenidone exhibits cardioprotective effects by regulating myocardial fibrosis and vascular permeability in pressure-overloaded hearts. Am J Physiol Heart Circ Physiol. 2015;309(3):H512–22. https://doi.org/10.1152/ajpheart.00137.2015.

    Article  CAS  PubMed  Google Scholar 

  240. Edgley AJ, Krum H, Kelly DJ. Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-β. Cardiovasc Ther. 2012;30(1):e30–40. https://doi.org/10.1111/j.1755-5922.2010.00228.x.

    Article  CAS  PubMed  Google Scholar 

  241. Kelly DJ, Zhang Y, Connelly K, Cox AJ, Martin J, Krum H, Gilbert RE. Tranilast attenuates diastolic dysfunction and structural injury in experimental diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2007;293(5):H2860–9. https://doi.org/10.1152/ajpheart.01167.2006.

    Article  CAS  PubMed  Google Scholar 

  242. Martin J, Kelly DJ, Mifsud SA, Zhang Y, Cox AJ, See F, Krum H, Wilkinson-Berka J, Gilbert RE. Tranilast attenuates cardiac matrix deposition in experimental diabetes: role of transforming growth factor-beta. Cardiovasc Res. 2005;65(3):694–701. https://doi.org/10.1016/j.cardiores.2004.10.041.

    Article  CAS  PubMed  Google Scholar 

  243. Forcheron F, Basset A, Abdallah P, Del Carmine P, Gadot N, Beylot M. Diabetic cardiomyopathy: effects of fenofibrate and metformin in an experimental model – the Zucker diabetic rat. Cardiovasc Diabetol. 2009;8:16. https://doi.org/10.1186/1475-2840-8-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Zhang J, Cheng Y, Gu J, Wang S, Zhou S, Wang Y, Tan Y, Feng W, Fu Y, Mellen N, Cheng R, Ma J, Zhang C, Li Z, Cai L. Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of type 1 diabetic mice. Clin Sci (London, England: 1979). 2016;130(8):625–41. https://doi.org/10.1042/CS20150623.

    Article  CAS  Google Scholar 

  245. Cevey ÁC, Mirkin GA, Donato M, Rada MJ, Penas FN, Gelpi RJ, Goren NB. Treatment with fenofibrate plus a low dose of Benznidazole attenuates cardiac dysfunction in experimental Chagas disease. Int J Parasitol Drugs Drug Resist. 2017;7(3):378–87. https://doi.org/10.1016/j.ijpddr.2017.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Lim HW, De Windt LJ, Mante J, Kimball TR, Witt SA, Sussman MA, Molkentin JD. Reversal of cardiac hypertrophy in transgenic disease models by calcineurin inhibition. J Mol Cell Cardiol. 2000;32(4):697–709. https://doi.org/10.1006/jmcc.2000.1113.

    Article  CAS  PubMed  Google Scholar 

  247. Sussman MA, Lim HW, Gude N, Taigen T, Olson EN, Robbins J, Colbert MC, Gualberto A, Wieczorek DF, Molkentin JD. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science (New York, NY). 1998;281(5383):1690–3.

    Article  CAS  Google Scholar 

  248. Taigen T, De Windt LJ, Lim HW, Molkentin JD. Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A. 2000;97(3):1196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Takeda Y, Yoneda T, Demura M, Usukura M, Mabuchi H. Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation. 2002;105(6):677–9.

    Article  CAS  PubMed  Google Scholar 

  250. Ding B, Price RL, Borg TK, Weinberg EO, Halloran PF, Lorell BH. Pressure overload induces severe hypertrophy in mice treated with cyclosporine, an inhibitor of calcineurin. Circ Res. 1999;84(6):729–34.

    Article  CAS  PubMed  Google Scholar 

  251. Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L, Wakimoto H, Nayor M, Konno T, Gorham JM, Wolf CM, Kim JB, Schmitt JP, Molkentin JD, Norris RA, Tager AM, Hoffman SR, Markwald RR, Seidman CE, Seidman JG. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J Clin Invest. 2010;120(10):3520–9. https://doi.org/10.1172/JCI42028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ananthasubramaniam K, Garikapati K, Williams CT. Progressive left ventricular hypertrophy after heart transplantation: insights and mechanisms suggested by multimodal images. Tex Heart Inst J. 2016;43(1):65–8. https://doi.org/10.14503/THIJ-14-4657.

    Article  PubMed  PubMed Central  Google Scholar 

  253. McLeod J, Wu S, Grazette L, Sarcon A. Tacrolimus-associated dilated cardiomyopathy in adult patient after orthotopic liver transplant. J Invest Med High Impact Case Rep. 2017;5(2):2324709617706087. https://doi.org/10.1177/2324709617706087.

    Article  Google Scholar 

  254. Zhang N, Wei W-Y, Li L-L, Hu C, Tang Q-Z. Therapeutic potential of polyphenols in cardiac fibrosis. Front Pharmacol. 2018;9:122. https://doi.org/10.3389/fphar.2018.00122.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Guo H, Zhang X, Cui Y, Zhou H, Xu D, Shan T, Zhang F, Guo Y, Chen Y, Wu D. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload. Toxicol Appl Pharmacol. 2015;287(2):168–77. https://doi.org/10.1016/j.taap.2015.06.002.

    Article  CAS  PubMed  Google Scholar 

  256. Guo S, Meng X-W, Yang X-S, Liu X-F, Ou-Yang C-H, Liu C. Curcumin administration suppresses collagen synthesis in the hearts of rats with experimental diabetes. Acta Pharmacol Sin. 2018;39(2):195–204. https://doi.org/10.1038/aps.2017.92.

    Article  PubMed  Google Scholar 

  257. Li M, Jiang Y, Jing W, Sun B, Miao C, Ren L. Quercetin provides greater cardioprotective effect than its glycoside derivative rutin on isoproterenol-induced cardiac fibrosis in the rat. Can J Physiol Pharmacol. 2013;91(11):951–9. https://doi.org/10.1139/cjpp-2012-0432.

    Article  CAS  PubMed  Google Scholar 

  258. Kuno A, Hori YS, Hosoda R, Tanno M, Miura T, Shimamoto K, Horio Y. Resveratrol improves cardiomyopathy in dystrophin-deficient mice through SIRT1 protein-mediated modulation of P300 protein. J Biol Chem. 2013;288(8):5963–72. https://doi.org/10.1074/jbc.M112.392050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Wu H, Li G-N, Xie J, Li R, Chen Q-H, Chen J-Z, Wei Z-H, Kang L-N, Xu B. Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-β/periostin pathway in STZ-induced diabetic mice. BMC Cardiovasc Disord. 2016;16:5. https://doi.org/10.1186/s12872-015-0169-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Adamo CM, Dai D-F, Percival JM, Minami E, Willis MS, Patrucco E, Froehner SC, Beavo JA. Sildenafil reverses cardiac dysfunction in the Mdx mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2010;107(44):19079–83. https://doi.org/10.1073/pnas.1013077107.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Leung DG, Herzka DA, Thompson WR, He B, Bibat G, Tennekoon G, Russell SD, Schuleri KH, Lardo AC, Kass DA, Thompson RE, Judge DP, Wagner KR. Sildenafil does not improve cardiomyopathy in Duchenne/Becker muscular dystrophy. Ann Neurol. 2014;76(4):541–9. https://doi.org/10.1002/ana.24214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Hammers DW, Sleeper MM, Forbes SC, Shima A, Walter GA, Sweeney HL. Tadalafil treatment delays the onset of cardiomyopathy in dystrophin-deficient hearts. J Am Heart Assoc. 2016;5(8):e003911. https://doi.org/10.1161/JAHA.116.003911.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Arimura T, Helbling-Leclerc A, Massart C, Varnous S, Niel F, Lacène E, Fromes Y, Toussaint M, Mura A-M, Keller DI, Amthor H, Isnard R, Malissen M, Schwartz K, Bonne G. Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum Mol Genet. 2005;14(1):155–69. https://doi.org/10.1093/hmg/ddi017.

    Article  CAS  PubMed  Google Scholar 

  264. Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T, Bonne G, Worman HJ. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Invest. 2007;117(5):1282–93. https://doi.org/10.1172/JCI29042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Wu W, Muchir A, Shan J, Bonne G, Worman HJ. Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation. 2011;123(1):53–61. https://doi.org/10.1161/CIRCULATIONAHA.110.970673.

    Article  CAS  PubMed  Google Scholar 

  266. Peter PS, Brady JE, Yan L, Chen W, Engelhardt S, Wang Y, Sadoshima J, Vatner SF, Vatner DE. Inhibition of P38 alpha MAPK rescues cardiomyopathy induced by overexpressed beta 2-adrenergic receptor, but not beta 1-adrenergic receptor. J Clin Invest. 2007;117(5):1335–43. https://doi.org/10.1172/JCI29576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Zhang C, Zhou G, Chen Y, Liu S, Chen F, Xie L, Wang W, Zhang Y, Wang T, Lai X, Ma L. Human umbilical cord mesenchymal stem cells alleviate interstitial fibrosis and cardiac dysfunction in a dilated cardiomyopathy rat model by inhibiting TNF-α and TGF-β1/ERK1/2 signaling pathways. Mol Med Rep. 2018;17(1):71–8. https://doi.org/10.3892/mmr.2017.7882.

    Article  CAS  PubMed  Google Scholar 

  268. Arnous S, Mozid A, Mathur A. The bone marrow derived adult stem cells for dilated cardiomyopathy (REGENERATE-DCM) trial: study design. Regen Med. 2011;6(4):525–33. https://doi.org/10.2217/rme.11.29.

    Article  PubMed  Google Scholar 

  269. Pincott ES, Ridout D, Brocklesby M, McEwan A, Muthurangu V, Burch M. A randomized study of autologous bone marrow-derived stem cells in pediatric cardiomyopathy. J Heart Lung Transplant. 2017;36(8):837–44. https://doi.org/10.1016/j.healun.2017.01.008.

    Article  PubMed  Google Scholar 

  270. Schmitt JP, Debold EP, Ahmad F, Armstrong A, Frederico A, Conner DA, Mende U, Lohse MJ, Warshaw D, Seidman CE, Seidman JG. Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function. Proc Natl Acad Sci U S A. 2006;103(39):14525–30. https://doi.org/10.1073/pnas.0606383103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Chun JL, O’Brien R, Berry SE. Cardiac dysfunction and pathology in the dystrophin and utrophin-deficient mouse during development of dilated cardiomyopathy. Neuromuscul Disord NMD. 2012;22(4):368–79. https://doi.org/10.1016/j.nmd.2011.07.003.

    Article  PubMed  Google Scholar 

  272. Omens JH, Usyk TP, Li Z, McCulloch AD. Muscle LIM protein deficiency leads to alterations in passive ventricular mechanics. Am J Physiol Heart Circ Physiol. 2002;282(2):H680–7. https://doi.org/10.1152/ajpheart.00773.2001.

    Article  CAS  PubMed  Google Scholar 

  273. D’Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB, Dorn GW. Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A. 1997;94(15):8121–6.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Liao R, Nascimben L, Friedrich J, Gwathmey JK, Ingwall JS. Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance. Circ Res. 1996;78(5):893–902.

    Article  CAS  PubMed  Google Scholar 

  275. Wilson DW, Oslund KL, Lyons B, Foreman O, Burzenski L, Svenson KL, Chase TH, Shultz LD. Inflammatory dilated cardiomyopathy in Abcg5-deficient mice. Toxicol Pathol. 2013;41(6):880–92. https://doi.org/10.1177/0192623312466191.

    Article  CAS  PubMed  Google Scholar 

  276. Fentzke RC, Korcarz CE, Lang RM, Lin H, Leiden JM. Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. J Clin Invest. 1998;101(11):2415–26. https://doi.org/10.1172/JCI2950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res. 1997;81(4):627–35.

    Article  CAS  PubMed  Google Scholar 

  278. Hall DG, Morley GE, Vaidya D, Ard M, Kimball TR, Witt SA, Colbert MC. Early onset heart failure in transgenic mice with dilated cardiomyopathy. Pediatr Res. 2000;48(1):36–42. https://doi.org/10.1203/00006450-200007000-00009.

    Article  CAS  PubMed  Google Scholar 

  279. Sussman MA, Welch S, Cambon N, Klevitsky R, Hewett TE, Price R, Witt SA, Kimball TR. Myofibril degeneration caused by tropomodulin overexpression leads to dilated cardiomyopathy in juvenile mice. J Clin Invest. 1998;101(1):51–61. https://doi.org/10.1172/JCI1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Maddatu TP, Garvey SM, Schroeder DG, Zhang W, Kim S-Y, Nicholson AI, Davis CJ, Cox GA. Dilated cardiomyopathy in the Nmd mouse: transgenic rescue and QTLs that improve cardiac function and survival. Hum Mol Genet. 2005;14(21):3179–89. https://doi.org/10.1093/hmg/ddi349.

    Article  CAS  PubMed  Google Scholar 

  281. Xu J, Gong NL, Bodi I, Aronow BJ, Backx PH, Molkentin JD. Myocyte enhancer factors 2A and 2C induce dilated cardiomyopathy in transgenic mice. J Biol Chem. 2006;281(14):9152–62. https://doi.org/10.1074/jbc.M510217200.

    Article  CAS  PubMed  Google Scholar 

  282. Hamada H, Suzuki M, Yuasa S, Mimura N, Shinozuka N, Takada Y, Suzuki M, Nishino T, Nakaya H, Koseki H, Aoe T. Dilated cardiomyopathy caused by aberrant endoplasmic reticulum quality control in mutant KDEL receptor transgenic mice. Mol Cell Biol. 2004;24(18):8007–17. https://doi.org/10.1128/MCB.24.18.8007-8017.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Zheng M, Cheng H, Li X, Zhang J, Cui L, Ouyang K, Han L, Zhao T, Gu Y, Dalton ND, Bang M-L, Peterson KL, Chen J. Cardiac-specific ablation of cypher leads to a severe form of dilated cardiomyopathy with premature death. Hum Mol Genet. 2009;18(4):701–13. https://doi.org/10.1093/hmg/ddn400.

    Article  CAS  PubMed  Google Scholar 

  284. Li Z, Ai T, Samani K, Xi Y, Tzeng H-P, Xie M, Wu S, Ge S, Taylor MD, Dong J-W, Cheng J, Ackerman MJ, Kimura A, Sinagra G, Brunelli L, Faulkner G, Vatta M. A ZASP missense mutation, S196L, leads to cytoskeletal and electrical abnormalities in a mouse model of cardiomyopathy. Circ Arrhythm Electrophysiol. 2010;3(6):646–56. https://doi.org/10.1161/CIRCEP.109.929240.

    Article  CAS  PubMed  Google Scholar 

  285. Ferreira-Cornwell MC, Luo Y, Narula N, Lenox JM, Lieberman M, Radice GL. Remodeling the intercalated disc leads to cardiomyopathy in mice misexpressing cadherins in the heart. J Cell Sci. 2002;115(Pt 8):1623–34.

    CAS  PubMed  Google Scholar 

  286. Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL, Schaefer E, Yager K. Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active Rac1. J Clin Invest. 2000;105(7):875–86. https://doi.org/10.1172/JCI8497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Lee D, Oka T, Hunter B, Robinson A, Papp S, Nakamura K, Srisakuldee W, Nickel BE, Light PE, Dyck JRB, Lopaschuk GD, Kardami E, Opas M, Michalak M. Calreticulin induces dilated cardiomyopathy. PLoS One. 2013;8(2):e56387. https://doi.org/10.1371/journal.pone.0056387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Cho MC, Rapacciuolo A, Koch WJ, Kobayashi Y, Jones LR, Rockman HA. Defective beta-adrenergic receptor signaling precedes the development of dilated cardiomyopathy in transgenic mice with calsequestrin overexpression. J Biol Chem. 1999;274(32):22251–6.

    Article  CAS  PubMed  Google Scholar 

  289. Vanhoutte L, Guilbaud C, Martherus R, Bouzin C, Gallez B, Dessy C, Balligand J-L, Moniotte S, Feron O. MRI assessment of cardiomyopathy induced by Β1-adrenoreceptor autoantibodies and protection through Β3-adrenoreceptor overexpression. Sci Rep. 2017;7:43951. https://doi.org/10.1038/srep43951.

    Article  PubMed  PubMed Central  Google Scholar 

  290. Lemire I, Ducharme A, Tardif JC, Poulin F, Jones LR, Allen BG, Hébert TE, Rindt H. Cardiac-directed overexpression of wild-type Alpha1B-adrenergic receptor induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2001;281(2):H931–8. https://doi.org/10.1152/ajpheart.2001.281.2.H931.

    Article  CAS  PubMed  Google Scholar 

  291. Crone SA, Zhao Y-Y, Fan L, Gu Y, Minamisawa S, Liu Y, Peterson KL, Chen J, Kahn R, Condorelli G, Ross J, Chien KR, Lee K-F. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med. 2002;8(5):459–65. https://doi.org/10.1038/nm0502-459.

    Article  CAS  PubMed  Google Scholar 

  292. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995;11(4):376–81. https://doi.org/10.1038/ng1295-376.

    Article  CAS  PubMed  Google Scholar 

  293. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science (New York, NY). 2001;291(5502):319–22. https://doi.org/10.1126/science.291.5502.319.

    Article  CAS  Google Scholar 

  294. Matsumori A, Kawai C. An animal model of congestive (dilated) cardiomyopathy: dilatation and hypertrophy of the heart in the chronic stage in DBA/2 mice with myocarditis caused by encephalomyocarditis virus. Circulation. 1982;66(2):355–60.

    Article  CAS  PubMed  Google Scholar 

  295. Eigenthaler M, Engelhardt S, Schinke B, Kobsar A, Schmitteckert E, Gambaryan S, Engelhardt CM, Krenn V, Eliava M, Jarchau T, Lohse MJ, Walter U, Hein L. Disruption of cardiac Ena-VASP protein localization in intercalated disks causes dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2003;285(6):H2471–81. https://doi.org/10.1152/ajpheart.00362.2003.

    Article  CAS  PubMed  Google Scholar 

  296. Kuwahara K, Saito Y, Takano M, Arai Y, Yasuno S, Nakagawa Y, Takahashi N, Adachi Y, Takemura G, Horie M, Miyamoto Y, Morisaki T, Kuratomi S, Noma A, Fujiwara H, Yoshimasa Y, Kinoshita H, Kawakami R, Kishimoto I, Nakanishi M, Usami S, Saito Y, Harada M, Nakao K. NRSF regulates the fetal cardiac gene program and maintains normal cardiac structure and function. EMBO J. 2003;22(23):6310–21. https://doi.org/10.1093/emboj/cdg601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Zemljic-Harpf AE, Miller JC, Henderson SA, Wright AT, Manso AM, Elsherif L, Dalton ND, Thor AK, Perkins GA, McCulloch AD, Ross RS. Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol Cell Biol. 2007;27(21):7522–37. https://doi.org/10.1128/MCB.00728-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Elliott JF, Liu J, Yuan Z-N, Bautista-Lopez N, Wallbank SL, Suzuki K, Rayner D, Nation P, Robertson MA, Liu G, Kavanagh KM. Autoimmune cardiomyopathy and heart block develop spontaneously in HLA-DQ8 transgenic IAbeta knockout NOD mice. Proc Natl Acad Sci U S A. 2003;100(23):13447–52. https://doi.org/10.1073/pnas.2235552100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Son N-H, Park T-S, Yamashita H, Yokoyama M, Huggins LA, Okajima K, Homma S, Szabolcs MJ, Huang L-S, Goldberg IJ. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Invest. 2007;117(10):2791–801. https://doi.org/10.1172/JCI30335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Song W, Dyer E, Stuckey D, Leung M-C, Memo M, Mansfield C, Ferenczi M, Liu K, Redwood C, Nowak K, Harding S, Clarke K, Wells D, Marston S. Investigation of a transgenic mouse model of familial dilated cardiomyopathy. J Mol Cell Cardiol. 2010;49(3):380–9. https://doi.org/10.1016/j.yjmcc.2010.05.009.

    Article  CAS  PubMed  Google Scholar 

  301. Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG. A mouse model of familial hypertrophic cardiomyopathy. Science (New York, NY). 1996;272(5262):731–4.

    Article  CAS  Google Scholar 

  302. Marian AJ, Wu Y, Lim DS, McCluggage M, Youker K, Yu QT, Brugada R, DeMayo F, Quinones M, Roberts R. A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest. 1999;104(12):1683–92. https://doi.org/10.1172/JCI7956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Tardiff JC, Factor SM, Tompkins BD, Hewett TE, Palmer BM, Moore RL, Schwartz S, Robbins J, Leinwand LA. A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. J Clin Invest. 1998;101(12):2800–11. https://doi.org/10.1172/JCI2389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Tardiff JC, Hewett TE, Palmer BM, Olsson C, Factor SM, Moore RL, Robbins J, Leinwand LA. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest. 1999;104(4):469–81. https://doi.org/10.1172/JCI6067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Harada K, Potter JD. Familial hypertrophic cardiomyopathy mutations from different functional regions of troponin T result in different effects on the PH and Ca2+ sensitivity of cardiac muscle contraction. J Biol Chem. 2004;279(15):14488–95. https://doi.org/10.1074/jbc.M309355200.

    Article  CAS  PubMed  Google Scholar 

  306. Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J. A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy. J Clin Invest. 1998;102(7):1292–300. https://doi.org/10.1172/JCI3880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J. In vivo modeling of myosin binding protein C familial hypertrophic cardiomyopathy. Circ Res. 1999;85(9):841–7.

    Article  CAS  PubMed  Google Scholar 

  308. Muthuchamy M, Pieples K, Rethinasamy P, Hoit B, Grupp IL, Boivin GP, Wolska B, Evans C, Solaro RJ, Wieczorek DF. Mouse model of a familial hypertrophic cardiomyopathy mutation in alpha-tropomyosin manifests cardiac dysfunction. Circ Res. 1999;85(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  309. Sakamoto A, Ono K, Abe M, Jasmin G, Eki T, Murakami Y, Masaki T, Toyo-oka T, Hanaoka F. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc Natl Acad Sci U S A. 1997;94(25):13873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Kittleson MD, Meurs KM, Munro MJ, Kittleson JA, Liu SK, Pion PD, Towbin JA. Familial hypertrophic cardiomyopathy in maine coon cats: an animal model of human disease. Circulation. 1999;99(24):3172–80.

    Article  CAS  PubMed  Google Scholar 

  311. Welikson RE, Buck SH, Patel JR, Moss RL, Vikstrom KL, Factor SM, Miyata S, Weinberger HD, Leinwand LA. Cardiac myosin heavy chains lacking the light chain binding domain cause hypertrophic cardiomyopathy in mice. Am J Phys. 1999;276(6 Pt 2):H2148–58.

    CAS  Google Scholar 

  312. Lutucuta S, Tsybouleva N, Ishiyama M, Defreitas G, Wei L, Carabello B, Marian AJ. Induction and reversal of cardiac phenotype of human hypertrophic cardiomyopathy mutation cardiac troponin T-Q92 in switch on-switch off bigenic mice. J Am Coll Cardiol. 2004;44(11):2221–30. https://doi.org/10.1016/j.jacc.2004.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. James J, Zhang Y, Osinska H, Sanbe A, Klevitsky R, Hewett TE, Robbins J. Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circ Res. 2000;87(9):805–11.

    Article  CAS  PubMed  Google Scholar 

  314. Kerrick WGL, Kazmierczak K, Xu Y, Wang Y, Szczesna-Cordary D. Malignant familial hypertrophic cardiomyopathy D166V mutation in the ventricular myosin regulatory light chain causes profound effects in skinned and intact papillary muscle fibers from transgenic mice. FASEB J Off Publ Fed Am Soc Exp Biol. 2009;23(3):855–65. https://doi.org/10.1096/fj.08-118182.

    Article  CAS  Google Scholar 

  315. Du J, Liu J, Feng H-Z, Hossain MM, Gobara N, Zhang C, Li Y, Jean-Charles P-Y, Jin J-P, Huang X-P. Impaired relaxation is the main manifestation in transgenic mice expressing a restrictive cardiomyopathy mutation, R193H, in cardiac TnI. Am J Physiol Heart Circ Physiol. 2008;294(6):H2604–13. https://doi.org/10.1152/ajpheart.91506.2007.

    Article  CAS  PubMed  Google Scholar 

  316. Dvornikov AV, Smolin N, Zhang M, Martin JL, Robia SL, de Tombe PP. Restrictive cardiomyopathy troponin I R145W mutation does not perturb myofilament length-dependent activation in human cardiac sarcomeres. J Biol Chem. 2016;291(41):21817–28. https://doi.org/10.1074/jbc.M116.746172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Heuser A, Plovie ER, Ellinor PT, Grossmann KS, Shin JT, Wichter T, Basson CT, Lerman BB, Sasse-Klaassen S, Thierfelder L, MacRae CA, Gerull B. Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2006;79(6):1081–8. https://doi.org/10.1086/509044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Meurs KM, Lacombe VA, Dryburgh K, Fox PR, Reiser PR, Kittleson MD. Differential expression of the cardiac ryanodine receptor in normal and arrhythmogenic right ventricular cardiomyopathy canine hearts. Hum Genet. 2006;120(1):111–8. https://doi.org/10.1007/s00439-006-0193-2.

    Article  CAS  PubMed  Google Scholar 

  319. Kannankeril PJ, Mitchell BM, Goonasekera SA, Chelu MG, Zhang W, Sood S, Kearney DL, Danila CI, De Biasi M, Wehrens XHT, Pautler RG, Roden DM, Taffet GE, Dirksen RT, Anderson ME, Hamilton SL. Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy. Proc Natl Acad Sci U S A. 2006;103(32):12179–84. https://doi.org/10.1073/pnas.0600268103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Asano Y, Takashima S, Asakura M, Shintani Y, Liao Y, Minamino T, Asanuma H, Sanada S, Kim J, Ogai A, Fukushima T, Oikawa Y, Okazaki Y, Kaneda Y, Sato M, Miyazaki J, Kitamura S, Tomoike H, Kitakaze M, Hori M. Lamr1 functional retroposon causes right ventricular dysplasia in mice. Nat Genet. 2004;36(2):123–30. https://doi.org/10.1038/ng1294.

    Article  CAS  PubMed  Google Scholar 

  321. Yang Z, Bowles NE, Scherer SE, Taylor MD, Kearney DL, Ge S, Nadvoretskiy VV, DeFreitas G, Carabello B, Brandon LI, Godsel LM, Green KJ, Saffitz JE, Li H, Danieli GA, Calkins H, Marcus F, Towbin JA. Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Res. 2006;99(6):646–55. https://doi.org/10.1161/01.RES.0000241482.19382.c6.

    Article  CAS  PubMed  Google Scholar 

  322. Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD, Khoury DS, Marian AJ. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest. 2006;116(7):2012–21. https://doi.org/10.1172/JCI27751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Cruz FM, Sanz-Rosa D, Roche-Molina M, García-Prieto J, García-Ruiz JM, Pizarro G, Jiménez-Borreguero LJ, Torres M, Bernad A, Ruíz-Cabello J, Fuster V, Ibáñez B, Bernal JA. Exercise triggers ARVC phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. J Am Coll Cardiol. 2015;65(14):1438–50. https://doi.org/10.1016/j.jacc.2015.01.045.

    Article  CAS  PubMed  Google Scholar 

  324. Kirchhof P, Fabritz L, Zwiener M, Witt H, Schäfers M, Zellerhoff S, Paul M, Athai T, Hiller K-H, Baba HA, Breithardt G, Ruiz P, Wichter T, Levkau B. Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. Circulation. 2006;114(17):1799–806. https://doi.org/10.1161/CIRCULATIONAHA.106.624502.

    Article  PubMed  Google Scholar 

  325. Martin ED, Moriarty MA, Byrnes L, Grealy M. Plakoglobin has both structural and signalling roles in zebrafish development. Dev Biol. 2009;327(1):83–96. https://doi.org/10.1016/j.ydbio.2008.11.036.

    Article  CAS  PubMed  Google Scholar 

  326. Nielsen LB, Bartels ED, Bollano E. Overexpression of apolipoprotein B in the heart impedes cardiac triglyceride accumulation and development of cardiac dysfunction in diabetic mice. J Biol Chem. 2002;277(30):27014–20. https://doi.org/10.1074/jbc.M203458200.

    Article  CAS  PubMed  Google Scholar 

  327. Vogel WM, Apstein CS. Effects of alloxan-induced diabetes on ischemia-reperfusion injury in rabbit hearts. Circ Res. 1988;62(5):975–82.

    Article  CAS  PubMed  Google Scholar 

  328. Song Y, Du Y, Prabhu SD, Epstein PN. Diabetic cardiomyopathy in OVE26 mice shows mitochondrial ROS production and divergence between in vivo and in vitro contractility. Rev Diabet Stud RDS. 2007;4(3):159–68. https://doi.org/10.1900/RDS.2007.4.159.

    Article  PubMed  Google Scholar 

  329. Basu R, Oudit GY, Wang X, Zhang L, Ussher JR, Lopaschuk GD, Kassiri Z. Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. Am J Physiol Heart Circ Physiol. 2009;297(6):H2096–108. https://doi.org/10.1152/ajpheart.00452.2009.

    Article  CAS  PubMed  Google Scholar 

  330. Barouch LA, Berkowitz DE, Harrison RW, O’Donnell CP, Hare JM. Disruption of leptin signaling contributes to cardiac hypertrophy independently of body weight in mice. Circulation. 2003;108(6):754–9. https://doi.org/10.1161/01.CIR.0000083716.82622.FD.

    Article  CAS  PubMed  Google Scholar 

  331. Huynh K, Kiriazis H, Du X-J, Love JE, Jandeleit-Dahm KA, Forbes JM, McMullen JR, Ritchie RH. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the Db/Db mouse model of type 2 diabetes. Diabetologia. 2012;55(5):1544–53. https://doi.org/10.1007/s00125-012-2495-3.

    Article  CAS  PubMed  Google Scholar 

  332. van den Brom CE, Bosmans JWAM, Vlasblom R, Handoko LM, Huisman MC, Lubberink M, Molthoff CFM, Lammertsma AA, Ouwens MD, Diamant M, Boer C. Diabetic cardiomyopathy in Zucker diabetic fatty rats: the forgotten right ventricle. Cardiovasc Diabetol. 2010;9:25. https://doi.org/10.1186/1475-2840-9-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, Gross RW, Kelly DP. A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci U S A. 2003;100(3):1226–31. https://doi.org/10.1073/pnas.0336724100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herrero P, Saffitz JE, Schaffer JE. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest. 2001;107(7):813–22. https://doi.org/10.1172/JCI10947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Yagyu H, Chen G, Yokoyama M, Hirata K, Augustus A, Kako Y, Seo T, Hu Y, Lutz EP, Merkel M, Bensadoun A, Homma S, Goldberg IJ. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest. 2003;111(3):419–26. https://doi.org/10.1172/JCI16751.

    Article  PubMed  PubMed Central  Google Scholar 

  336. Flagg TP, Cazorla O, Remedi MS, Haim TE, Tones MA, Bahinski A, Numann RE, Kovacs A, Schaffer JE, Nichols CG, Nerbonne JM. Ca2+-independent alterations in diastolic sarcomere length and relaxation kinetics in a mouse model of lipotoxic diabetic cardiomyopathy. Circ Res. 2009;104(1):95–103. https://doi.org/10.1161/CIRCRESAHA.108.186809.

    Article  CAS  PubMed  Google Scholar 

  337. Wakasaki H, Koya D, Schoen FJ, Jirousek MR, Ways DK, Hoit BD, Walsh RA, King GL. Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci U S A. 1997;94(17):9320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Cittadini A, Mantzoros CS, Hampton TG, Travers KE, Katz SE, Morgan JP, Flier JS, Douglas PS. Cardiovascular abnormalities in transgenic mice with reduced brown fat: an animal model of human obesity. Circulation. 1999;100(21):2177–83.

    Article  CAS  PubMed  Google Scholar 

  339. Boudina S, Bugger H, Sena S, O’Neill BT, Zaha VG, Ilkun O, Wright JJ, Mazumder PK, Palfreyman E, Tidwell TJ, Theobald H, Khalimonchuk O, Wayment B, Sheng X, Rodnick KJ, Centini R, Chen D, Litwin SE, Weimer BE, Abel ED. Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation. 2009;119(9):1272–83. https://doi.org/10.1161/CIRCULATIONAHA.108.792101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Domenighetti AA, Danes VR, Curl CL, Favaloro JM, Proietto J, Delbridge LMD. Targeted GLUT-4 deficiency in the heart induces cardiomyocyte hypertrophy and impaired contractility linked with Ca(2+) and proton flux dysregulation. J Mol Cell Cardiol. 2010;48(4):663–72. https://doi.org/10.1016/j.yjmcc.2009.11.017.

    Article  CAS  PubMed  Google Scholar 

  341. Wölkart G, Schrammel A, Dörffel K, Haemmerle G, Zechner R, Mayer B. Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARα agonist. Br J Pharmacol. 2012;165(2):380–9. https://doi.org/10.1111/j.1476-5381.2011.01490.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Mora A, Davies AM, Bertrand L, Sharif I, Budas GR, Jovanović S, Mouton V, Kahn CR, Lucocq JM, Gray GA, Jovanović A, Alessi DR. Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J. 2003;22(18):4666–76. https://doi.org/10.1093/emboj/cdg469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Ritchie RH, Love JE, Huynh K, Bernardo BC, Henstridge DC, Kiriazis H, Tham YK, Sapra G, Qin C, Cemerlang N, Boey EJH, Jandeleit-Dahm K, Du X-J, McMullen JR. Enhanced phosphoinositide 3-kinase(P110α) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia. 2012;55(12):3369–81. https://doi.org/10.1007/s00125-012-2720-0.

    Article  CAS  PubMed  Google Scholar 

  344. Li H, Wang X, Mao Y, Hu R, Xu W, Lei Z, Zhou N, Jin L, Guo T, Li Z, Irwin DM, Niu G, Tan H. Long term liver specific glucokinase gene defect induced diabetic cardiomyopathy by up regulating NADPH oxidase and down regulating insulin receptor and P-AMPK. Cardiovasc Diabetol. 2014;13:24. https://doi.org/10.1186/1475-2840-13-24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. Schisler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravi, S., Willis, M.S., Schisler, J.C. (2019). Fibrotic Signaling in Cardiomyopathies. In: Willis, M., Yates, C., Schisler, J. (eds) Fibrosis in Disease . Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-98143-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98143-7_10

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-98142-0

  • Online ISBN: 978-3-319-98143-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics