Skip to main content

Innovative Approaches in Delivery of Eye Care: Diabetic Retinopathy

  • Chapter
  • First Online:
Book cover Innovative Approaches in the Delivery of Primary and Secondary Eye Care

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 497 Accesses

Abstract

Diabetes mellitus is one of the world’s major public health conditions, affecting 366 million in 2011 increasing to 552 million in 2030. Diabetic retinopathy (DR), a specific microvascular complication of diabetes, remains one of the leading causes for acquired vision loss worldwide in middle-aged working populations. While much of the advances and research have been focused on tertiary level care of patients with DR (e.g., laser, intraocular application of anti-vascular endothelial growth factor (anti-VEGF) and vitreoretinal surgery), solutions to sustainable prevention of vision loss involve developing innovative ways to optimize clinically and economically effective DR care in primary and secondary settings, both in resource-rich and resource-poor countries worldwide. Retinal photography, with additional use of ophthalmoscopy for selected cases, remains the most effective DR screening strategy in both resource-rich and resource-poor settings. Raising public awareness, improving access to the eye care services, and training more primary eye care workers are cost-effective measures to enable the success of a DR screening program in the resource-poor countries. Early detection and DR prevention remain public health imperatives. More focus, therefore, should be directed to the prevention of diabetes by raising public health awareness on the importance of a healthy lifestyle, nutrition, and physical activity. For those with diabetes, it is important for primary care physicians to optimize the modifiable risk factors, including the glycemic index, blood pressure, lipid control, and body weight control, to prevent development and progression of DR and other diabetes-related micro- and macrovascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moss SE, Klein R, Klein BE. The 14-year incidence of visual loss in a diabetic population. Ophthalmology. 1998;105(6):998–1003.

    Article  CAS  PubMed  Google Scholar 

  2. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.

    Article  PubMed  Google Scholar 

  3. Klein BE. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol. 2007;14(4):179–83.

    Article  PubMed  Google Scholar 

  4. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–36.

    Article  PubMed  Google Scholar 

  5. Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ferris FL 3rd. How effective are treatments for diabetic retinopathy? JAMA. 1993;269(10):1290–1.

    Article  PubMed  Google Scholar 

  7. Rohan T, Frost C, Wald N. Prevention of blindness by screening for diabetic retinopathy: a quantitative assessment. BMJ. 1989;299:1198–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs – an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98(5 Suppl):786–806.

    Google Scholar 

  9. James M, Turner DA, Broadbent DM, Vora J, Harding SP. Cost effectiveness analysis of screening for sight threatening diabetic eye disease. BMJ. 2000;320(7250):1627–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones CD, Greenwood RH, Misra A, Bachmann MO. Incidence and progression of diabetic retinopathy during 17 years of a population-based screening program in England. Diabetes Care. 2012;35(3):592–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cikamatana L, Mitchell P, Rochtchina E, Foran S, Wang JJ. Five-year incidence and progression of diabetic retinopathy in a defined older population: the Blue Mountains Eye Study. Eye (Lond). 2007;21(4):465–71.

    Article  CAS  Google Scholar 

  12. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Google Scholar 

  13. Stratton IM, Kohner EM, Aldington SJ, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia. 2001;44(2):156–63.

    Article  CAS  PubMed  Google Scholar 

  14. Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA. 2007;298(8):902–16.

    Article  CAS  PubMed  Google Scholar 

  15. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342(6):381–9.

    Google Scholar 

  16. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: the twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology. 2009;116(3):497–503.

    Article  PubMed  Google Scholar 

  17. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology. 2008;115(11):1859–68.

    Article  PubMed  Google Scholar 

  18. Rema M, Srivastava BK, Anitha B, Deepa R, Mohan V. Association of serum lipids with diabetic retinopathy in urban South Indians – the Chennai Urban Rural Epidemiology Study (CURES) Eye Study – 2. Diabet Med J Br Diabet Assoc. 2006;23(9):1029–36.

    Article  CAS  Google Scholar 

  19. Lyons TJ, Jenkins AJ, Zheng D, et al. Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort. Invest Ophthalmol Vis Sci. 2004;45(3):910–8.

    Article  PubMed  Google Scholar 

  20. Raman R, Rani PK, Kulothungan V, Rachepalle SR, Kumaramanickavel G, Sharma T. Influence of serum lipids on clinically significant versus nonclinically significant macular edema: SN-DREAMS report number 13. Ophthalmology. 2010;117(4):766–72.

    Article  PubMed  Google Scholar 

  21. International Council of Ophthalmology. Diabetic eye care. ICO Guidelines for Diabetic Eye Care. 2014. http://www.icoph.org/taskforce-documents/diabetic-retinopathy-guidelines.html.

  22. Hammond C, Shackleton J, Flanagan DW, Herrtage J, Wade J. Comparison between an ophthalmic optician and ophthalmologist in screening for diabetic retinopathy. Eye. 1996;10:107–12.

    Article  PubMed  Google Scholar 

  23. Buxton M, Sculpher MJ, Ferguson BA, et al. Screening for treatable diabetic retinopathy: a comparison of different methods. Diabet Med. 1991;8:371–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lienert R. Inter-observer comparisons of ophthalmoscopic assessment of diabetic retinopathy. Aust NZJ Ophthalmol. 1989;17:363–8.

    Article  CAS  Google Scholar 

  25. Hutchinson A, McIntosh A, Peters J, et al. Effectiveness of screening and monitoring tests for diabetic retinopathy – a systematic review. Diabet Med J Br Diabet Assoc. 2000;17(7):495–506.

    Article  CAS  Google Scholar 

  26. Scanlon PH, Malhotra R, Greenwood RH, et al. Comparison of two reference standards in validating two field mydriatic digital photography as a method of screening for diabetic retinopathy. Br J Ophthalmol. 2003;87(10):1258–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murray R, Metcalf SM, Lewis PM, Mein JK, McAllister IL. Sustaining remote-area programs: retinal camera use by Aboriginal health workers and nurses in a Kimberley partnership. Med J Aust. 2005;182:520–3.

    PubMed  Google Scholar 

  28. Olson JA, Strachan FM, Hipwell JH, et al. A comparative evaluation of digital imaging, retinal photography and optometrist examination in screening for diabetic retinopathy. Diabet Med J Br Diabet Assoc. 2003;20(7):528–34.

    Article  CAS  Google Scholar 

  29. Gibbins RL, Owens DR, Allen JC, Eastman L. Practical application of the European Field Guide in screening for diabetic retinopathy by using ophthalmoscopy and 35 mm retinal slides. Diabetologia. 1998;41(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  30. Ting DS, Tay-Kearney ML, Kanagasingam Y. Light and portable novel device for diabetic retinopathy screening. Clin Exp Ophthalmol. 2012;40(1):e40–6.

    Article  PubMed  Google Scholar 

  31. Pugh JA, Jacobson JM, Van Heuven WA, et al. Screening for diabetic retinopathy. The wide-angle retinal camera. Diabetes Care. 1993;16(6):889–95.

    Article  CAS  PubMed  Google Scholar 

  32. Lin DY, Blumenkranz MS, Brothers RJ, Grosvenor DM. The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography. Am J Ophthalmol. 2002;134(2):204–13.

    Article  PubMed  Google Scholar 

  33. Ting DS, Tay-Kearney ML, Constable I, Lim L, Preen DB, Kanagasingam Y. Retinal video recording a new way to image and diagnose diabetic retinopathy. Ophthalmology. 2011;118(8):1588–93.

    Article  PubMed  Google Scholar 

  34. National Institute for Clinical Excellence. Diabetic retinopathy – early management and screening. London: National Institute for Clinical Excellence; 2001.

    Google Scholar 

  35. Lachkar Y, Bouassida W. Drug-induced acute angle closure glaucoma. Curr Opin Ophthalmol. 2007;18(2):129–33.

    Article  PubMed  Google Scholar 

  36. Liew G, Mitchell P, Wang JJ, Wong TY. Fundoscopy: to dilate or not to dilate? BMJ. 2006;332:3.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Resnikoff S, Pascolini D, Etya'ale D, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82(11):844–51.

    PubMed  PubMed Central  Google Scholar 

  38. Danielsen R, Jonasson F, Helgason T. Prevalence of retinopathy and proteinuria in type 1 diabetics in Iceland. Acta Med Scand. 1982;212(5):277–80.

    Article  CAS  PubMed  Google Scholar 

  39. Backlund LB, Algvere PV, Rosenqvist U. New blindness in diabetes reduced by more than one-third in Stockholm County. Diabet Med J Br Diabet Assoc. 1997;14(9):732–40.

    Article  CAS  Google Scholar 

  40. Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open. 2014;4(2):e004015.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Arun CS, Ngugi N, Lovelock L, Taylor R. Effectiveness of screening in preventing blindness due to diabetic retinopathy. Diabet Med J Br Diabet Assoc. 2003;20(3):186–90.

    Article  CAS  Google Scholar 

  42. Bäcklund LB, Algvere PV, Rosenqvist U. New blindness in diabetes reduced by more than one-third in Stockholm County. Diabet Med. 1997;14:732–40.

    Article  PubMed  Google Scholar 

  43. Aspelund T, Thornorisdottir O, Olafsdottir E, et al. Individual risk assessment and information technology to optimise screening frequency for diabetic retinopathy. Diabetologia. 2011;54(10):2525–32.

    Article  CAS  PubMed  Google Scholar 

  44. Health Mo. MOH clinical guidance on diabetes mellitus. 2014. Accessed at 4th May 2016. URL: https://www.moh.gov.sg/content.

  45. National Health Service (NHS) Diabetic Eye Screening Programme and Population Screening Programmes. Diabetic eye screening: commission and provide. 2015. Accessed at 4th May 2016. URL: https://www.gov.uk/government/collections/diabetic-eye-screening-commission-and-provide.

  46. Khandekar R. Screening and public health strategies for diabetic retinopathy in the Eastern Mediterranean region. Middle East Afr J Ophthalmol. 2012;19(2):178–84.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sharma S, Oliver-Fernandez A, Liu W, Buchholz P, Walt J. The impact of diabetic retinopathy on health-related quality of life. Curr Opin Ophthalmol. 2005;16(3):155–9.

    Article  PubMed  Google Scholar 

  48. Bursell SE, Cavallerano JD, Cavallerano AA, et al. Stereo nonmydriatic digital-video color retinal imaging compared with Early Treatment Diabetic Retinopathy Study seven standard field 35-mm stereo color photos for determining level of diabetic retinopathy. Ophthalmology. 2001;108(3):572–85.

    Article  CAS  PubMed  Google Scholar 

  49. Conlin PR, Fisch BM, Orcutt JC, Hetrick BJ, Darkins AW. Framework for a national teleretinal imaging program to screen for diabetic retinopathy in Veterans Health Administration patients. J Rehabil Res Dev. 2006;43(6):741–8.

    Article  PubMed  Google Scholar 

  50. Cavallerano AA, Cavallerano JD, Katalinic P, et al. A telemedicine program for diabetic retinopathy in a Veterans Affairs Medical Center--the Joslin Vision Network Eye Health Care Model. Am J Ophthalmol. 2005;139(4):597–604.

    Article  PubMed  Google Scholar 

  51. Gardner GG, Keating D, Williamson TH, Elliott AT. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br J Ophthalmol. 1996;80(11):940–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee SC, Lee ET, Kingsley RM, et al. Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts. Arch Ophthalmol. 2001;119(4):509–15.

    Article  CAS  PubMed  Google Scholar 

  53. Sinthanayothin C, Boyce JF, Williamson TH, et al. Automated detection of diabetic retinopathy on digital fundus images. Diabet Med J Br Diabet Assoc. 2002;19(2):105–12.

    Article  CAS  Google Scholar 

  54. Niemeijer M, van Ginneken B, Staal J, Suttorp-Schulten MS, Abramoff MD. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging. 2005;24(5):584–92.

    Article  PubMed  Google Scholar 

  55. Niemeijer M, van Ginneken B, Russell SR, Suttorp-Schulten MS, Abramoff MD. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Invest Ophthalmol Vis Sci. 2007;48(5):2260–7.

    Article  PubMed  Google Scholar 

  56. Walter T, Massin P, Erginay A, Ordonez R, Jeulin C, Klein JC. Automatic detection of microaneurysms in color fundus images. Med Image Anal. 2007;11(6):555–66.

    Article  PubMed  Google Scholar 

  57. Hansen MB, Abramoff MD, Folk JC, Mathenge W, Bastawrous A, Peto T. Results of automated retinal image analysis for detection of diabetic retinopathy from the Nakuru study, Kenya. PLoS One. 2015;10(10):e0139148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Abramoff MD, Reinhardt JM, Russell SR, et al. Automated early detection of diabetic retinopathy. Ophthalmology. 2010;117(6):1147–54.

    Article  PubMed  Google Scholar 

  59. Abramoff MD, Folk JC, Han DP, et al. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 2013;131(3):351–7.

    Article  PubMed  Google Scholar 

  60. Abramoff MD, Niemeijer M, Suttorp-Schulten MS, Viergever MA, Russell SR, van Ginneken B. Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes. Diabetes Care. 2008;31(2):193–8.

    Article  PubMed  Google Scholar 

  61. Philip S, Cowie LM, Olson JA. The impact of the Health Technology Board for Scotland’s grading model on referrals to ophthalmology services. Br J Ophthalmol. 2005;89(7):891–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Scotland GS, McNamee P, Philip S, et al. Cost-effectiveness of implementing automated grading within the national screening programme for diabetic retinopathy in Scotland. Br J Ophthalmol. 2007;91(11):1518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Scotland GS, McNamee P, Fleming AD, et al. Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy. Br J Ophthalmol. 2010;94(6):712–9.

    Article  CAS  PubMed  Google Scholar 

  64. Costa RA, Skaf M, Melo LA Jr, et al. Retinal assessment using optical coherence tomography. Prog Retin Eye Res. 2006;25(3):325–53.

    Article  PubMed  Google Scholar 

  65. Browning DJ, Glassman AR, Aiello LP, et al. Optical coherence tomography measurements and analysis methods in optical coherence tomography studies of diabetic macular edema. Ophthalmology. 2008;115(8):1366–71. 71 e1.

    Article  PubMed  Google Scholar 

  66. Massin P, Girach A, Erginay A, Gaudric A. Optical coherence tomography: a key to the future management of patients with diabetic macular oedema. Acta Ophthalmol Scand. 2006;84(4):466–74.

    Article  PubMed  Google Scholar 

  67. Prescott G, Sharp P, Goatman K, et al. Improving the cost-effectiveness of photographic screening for diabetic macular oedema: a prospective, multi-centre, UK study. Br J Ophthalmol. 2014;98(8):1042–9.

    Article  PubMed  Google Scholar 

  68. Miura M, Hong YJ, Yasuno Y, Muramatsu D, Iwasaki T, Goto H. Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography. Am J Ophthalmol. 2015;159(3):528–38 e3.

    Article  PubMed  Google Scholar 

  69. Salti HI, Nasrallah M, Haddad S, Khairallah W, Salti IS. Enhancing nonmydriatic color photographs of the retina with monochromatic views and a stereo pair to detect diabetic retinopathy. Ophthalmic Surg Lasers Imaging Off J Int Soc Imaging Eye. 2009;40(4):373–8.

    Article  Google Scholar 

  70. Elsner AE, Petrig BL, Papay JA, Kollbaum EJ, Clark CA, Muller MS. Fixation stability and scotoma mapping for patients with low vision. Optom Vision Sci Off Publ Am Acad Opt. 2013;90(2):164–73.

    Google Scholar 

  71. Muller MS, Elsner AE, VanNasdale DA, et al. Low cost retinal imaging for diabetic retinopathy screening. Invest Ophthalmol Vis Sci. 2009;50:3305.

    Google Scholar 

  72. Silva PS, Cavallerano JD, Tolls D, et al. Potential efficiency benefits of nonmydriatic ultrawide field retinal imaging in an ocular telehealth diabetic retinopathy program. Diabetes Care. 2014;37(1):50–5.

    Article  PubMed  Google Scholar 

  73. Wessel MM, Aaker GD, Parlitsis G, Cho M, D’Amico DJ, Kiss S. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina. 2012;32(4):785–91.

    Article  PubMed  Google Scholar 

  74. Silva PS, Cavallerano JD, Sun JK, Soliman AZ, Aiello LM, Aiello LP. Peripheral lesions identified by mydriatic ultrawide field imaging: distribution and potential impact on diabetic retinopathy severity. Ophthalmology. 2013;120(12):2587–95.

    Article  PubMed  Google Scholar 

  75. Manjunath V, Papastavrou V, Steel DH, et al. Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening. Eye (Lond). 2015;29(3):416–23.

    Article  CAS  Google Scholar 

  76. Navitsky C. The portable eye examination kit. A smartphone-based system brings ophthalmic diagnostic tests to remote settings. 2013. Retina today. Accessed at 4th May 2016. URL: http://retinatoday.com/pdfs/1113RT_News%20Feature.pdf.

  77. Adam MK, Brady CJ, Flowers AM, et al. Quality and diagnostic utility of mydriatic smartphone photography: the smartphone ophthalmoscopy reliability trial. Ophthalmic Surg Lasers Imaging Retina. 2015;46(6):631–7.

    Article  PubMed  Google Scholar 

  78. Kim JE, Chung M. Adaptive optics for retinal imaging: current status. Retina. 2013;33(8):1483–6.

    Article  PubMed  Google Scholar 

  79. Lombardo M, Lombardo G, Schiano Lomoriello D, Ducoli P, Stirpe M, Serrao S. Interocular symmetry of parafoveal photoreceptor cone density distribution. Retina. 2013;33(8):1640–9.

    Article  PubMed  Google Scholar 

  80. Nelson DA, Krupsky S, Pollack A, et al. Special report: noninvasive multi-parameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imaging Off J Int Soc Imaging Eye. 2005;36(1):57–66.

    Google Scholar 

  81. Burgansky-Eliash Z, Nelson DA, Bar-Tal OP, Lowenstein A, Grinvald A, Barak A. Reduced retinal blood flow velocity in diabetic retinopathy. Retina. 2010;30(5):765–73.

    Article  PubMed  Google Scholar 

  82. Field MG, Elner VM, Puro DG, et al. Rapid, noninvasive detection of diabetes-induced retinal metabolic stress. Arch Ophthalmol. 2008;126(7):934–8.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Poore S, Foster A, Zondervan M, Blanchet K. Planning and developing services for diabetic retinopathy in Sub-Saharan Africa. Int J Health Policy Manag. 2015;4(1):19–28.

    Article  PubMed  Google Scholar 

  84. Murthy KR, Murthy PR, Kapur A, Owens DR. Mobile diabetes eye care: experience in developing countries. Diabetes Res Clin Pract. 2012;97(3):343–9.

    Article  PubMed  Google Scholar 

  85. Sharma M, Chakrabarty AS, Pavan R, Sharma R, Pratibha G. An integrated, mobile service for diabetic retinopathy in rural India. Community Eye Health Int Centre Eye Health. 2011;24(75):17–8.

    Google Scholar 

  86. Wang S, Tikellis G, Wong N, Wong TY, Wang JJ. Lack of knowledge of glycosylated hemoglobin in patients with diabetic retinopathy. Diabetes Res Clin Pract. 2008;81(1):e15–7.

    Article  CAS  PubMed  Google Scholar 

  87. Norris SL, Lau J, Smith SJ, Schmid CH, Engelgau MM. Self-management education for adults with type 2 diabetes: a meta-analysis of the effect on glycemic control. Diabetes Care. 2002;25(7):1159–71.

    Article  PubMed  Google Scholar 

  88. Hall V, Thomsen RW, Henriksen O, Lohse N. Diabetes in Sub Saharan Africa 1999–2011: epidemiology and public health implications. A systematic review. BMC Public Health. 2011;11:564.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wang FH, Liang YB, Zhang F, et al. Prevalence of diabetic retinopathy in rural China: the Handan Eye Study. Ophthalmology. 2009;116(3):461–7.

    Article  PubMed  Google Scholar 

  90. Xie XW, Xu L, Wang YX, Jonas JB. Prevalence and associated factors of diabetic retinopathy. The Beijing Eye Study 2006. Graefes Arch Clin Exp Ophthalmol Albrecht von Graefes Arch Klin Exp Ophthalmol. 2008;246(11):1519–26.

    Article  Google Scholar 

  91. Raman R, Rani PK, Reddi Rachepalle S, et al. Prevalence of diabetic retinopathy in India: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study report 2. Ophthalmology. 2009;116(2):311–8.

    Article  PubMed  Google Scholar 

  92. Raman R, Ganesan S, Pal SS, Kulothungan V, Sharma T. Prevalence and risk factors for diabetic retinopathy in rural India. Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study III (SN-DREAMS III), report no 2. BMJ Open Diabetes Res Care. 2014;2(1):e000005.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dornhorst A, Merrin PK. Primary, secondary and tertiary prevention of non-insulin-dependent diabetes. Postgrad Med J. 1994;70(826):529–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. The Diabetic Retinopathy Study Research Group. Ophthalmology. 1981;88(7):583–600.

    Google Scholar 

  95. Early vitrectomy for severe vitreous hemorrhage in diabetic retinopathy. Two-year results of a randomized trial. Diabetic Retinopathy Vitrectomy Study report 2. The Diabetic Retinopathy Vitrectomy Study Research Group. Arch Ophthalmol. 1985;103(11):1644–52.

    Google Scholar 

  96. Coleman K, Austin BT, Brach C, Wagner EH. Evidence on the Chronic Care Model in the new millennium. Health Aff (Millwood). 2009;28(1):75–85.

    Article  Google Scholar 

  97. O’Connor PM, Harper CA, Brunton CL, Clews SJ, Haymes SA, Keeffe JE. Shared care for chronic eye diseases: perspectives of ophthalmologists, optometrists and patients. Med J Aust. 2012;196(10):646–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien Yin Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ting, D.S.W., Lamoureux, E., Wong, T.Y. (2019). Innovative Approaches in Delivery of Eye Care: Diabetic Retinopathy. In: Khanna, R., Rao, G., Marmamula, S. (eds) Innovative Approaches in the Delivery of Primary and Secondary Eye Care. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-98014-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98014-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98013-3

  • Online ISBN: 978-3-319-98014-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics