Skip to main content

Race from Pixels: Evolving Neural Network Controller for Vision-Based Car Driving

  • Conference paper
  • First Online:
Recent Developments in Data Science and Intelligent Analysis of Information (ICDSIAI 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 836))

  • 446 Accesses

Abstract

Modern robotics uses many advanced precise algorithms to control autonomous agents. Now arises tendency to apply machine learning in niches, where precise algorithms are hard to design or implement. With machine learning, for continuous control tasks, evolution strategies are used. We propose an enhancement to crossover operator, which diminishes probability of degraded offsprings compared to conventional crossover operators. Our experiments in TORCS environment show, that presented algorithm can evolve robust neural networks for non-trivial continuous control tasks such as driving a racing car in various tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. CoRR 1412.6980 (2014). http://arxiv.org/abs/1412.6980

  2. Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to End Learning for Self-Driving Cars. CoRR 1604.07316 (2016). http://arxiv.org/abs/1604.07316

  3. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.A.: Playing atari with deep reinforcement learning. CoRR 1312.5602 (2013). http://arxiv.org/abs/1312.5602

  4. Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Overcoming exploration in reinforcement learning with demonstrations. CoRR 1709.10089 (2017). http://arxiv.org/abs/1709.10089

  5. Bruce, J., Sünderhauf, N., Mirowski, P., Hadsell, R., Milford, M.: One-shot reinforcement learning for robot navigation with interactive replay. CoRR 1711.10137 (2017). http://arxiv.org/abs/1711.10137

  6. Salimans, T., Ho, J., Chen, X., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. CoRR 1703.03864 (2017). http://arxiv.org/abs/1703.03864

  7. Lehman, J., Chen, J., Clune, J., Stanley, K.O.: Safe mutations for deep and recurrent neural networks through output gradients. CoRR 1712.06563 (2017). http://arxiv.org/abs/1712.06563

  8. Gomez, F.J., Miikkulainen, R.: Solving non-Markovian control tasks with neuroevolution. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, IJCAI 1999, San Francisco, CA, USA, vol. 2, pp. 1356–1361. Morgan Kaufmann Publishers Inc. (1999). http://dl.acm.org/citation.cfm?id=1624312.1624411

  9. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002). https://doi.org/10.1162/106365602320169811

    Article  Google Scholar 

  10. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009). https://doi.org/10.1162/artl.2009.15.2.15202

    Article  Google Scholar 

  11. Zhang, X., Clune, J., Stanley, K.O.: On the relationship between the openai evolution strategy and stochastic gradient descent. CoRR 1712.06564 (2017). http://arxiv.org/abs/1712.06564

  12. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. CoRR 1712.06567 (2017). http://arxiv.org/abs/1712.06567

  13. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Computing Research Repository, 1502.01852 (2015). http://arxiv.org/abs/1502.01852

  14. Loiacono, D., Cardamone, L., Lanzi, P.L.: Simulated car racing championship: competition software manual. CoRR 1304.1672 (2013). http://arxiv.org/abs/1304.1672

  15. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. CoRR 1509.02971 (2015). http://arxiv.org/abs/1509.02971

  16. Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algorithms. Evol. Comput. 4(4), 361–394 (1996). https://doi.org/10.1162/evco.1996.4.4.361

    Article  Google Scholar 

  17. Koehn, P.: Combining genetic algorithms and neural networks: the encoding problem. The University of Tennessee, Knoxville (1994). http://homepages.inf.ed.ac.uk/pkoehn/publications/gann94.pdf

  18. Gwiazda, T.: Genetic Algorithms Reference Volume 2 Mutation Operator for Numerical Optimization Problems. In: Genetic Algorithms Reference. Simon and Schuster (2007). https://books.google.com.ua/books?id=O1FVGQAACAAJ

  19. Lau, B.: Using keras and deep deterministic policy gradient to play TORCS (2016). https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html

  20. Ding, W.G.: Python script for illustrating convolutional neural network (convnet) (2018). https://github.com/gwding/drawconvnet

  21. Sastry, K., Goldberg, D., Kendall, G.: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Springer, Boston (2005). https://doi.org/10.1007/0-387-28356-0_4

  22. Lehman, J., Chen, J., Clune, J., Stanley, K.O.: ES is more than just a traditional finite-difference approximator. CoRR 1712.06568 (2017). http://arxiv.org/abs/1712.06568

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borys Tymchenko .

Editor information

Editors and Affiliations

Appendix A Track Outlines

Appendix A Track Outlines

See Appendix Fig. 4.

Fig. 4.
figure 4

Different track outlines

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tymchenko, B., Antoshchuk, S. (2019). Race from Pixels: Evolving Neural Network Controller for Vision-Based Car Driving. In: Chertov, O., Mylovanov, T., Kondratenko, Y., Kacprzyk, J., Kreinovich, V., Stefanuk, V. (eds) Recent Developments in Data Science and Intelligent Analysis of Information. ICDSIAI 2018. Advances in Intelligent Systems and Computing, vol 836. Springer, Cham. https://doi.org/10.1007/978-3-319-97885-7_3

Download citation

Publish with us

Policies and ethics