Skip to main content

Abstract

This chapter targets low-power techniques for nanopower SAR ADCs with reference voltage generation. First of all, a 106nW 10b 80 kS/s SAR ADC with duty-cycled reference generation is presented, where a CMOS voltage reference, a duty-cycling block, and a LDO are integrated with the SAR ADC together. Furthermore, a low-power bidirectional comparator is utilized in the SAR ADC to reduce the power consumption. The reference-included SAR ADC achieves a FoM of 2.4fJ/conv.-step. Second, an energy-free DAC reset technique, “swap-to-reset,” is presented to deal with the large DAC reset energy in a SAR ADC, which is usually large compared with DAC conversion energy. In the prototype, the DAC energy consumption is reduced by one-third with “swap-to-reset” applied to the 2 MSBs. Finally, a low-power and area-efficient discrete-time reference driver is introduced. By calculating the energy consumption of each switching step, the DAC in a SAR ADC can be driven by a pre-charged decoupling capacitor compensated by a small auxiliary DAC. In the prototype, the SNDR/SFDR are improved by 2.7 dB/11.6 dB after enabling the 3b DAC compensation and the discrete-time reference driver only adds 10.8% and 10.1% to the power and chip area of the SAR ADC, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borghetti F, Nielsen JH, Ferragina V, Malcovati P, Andreani P, Baschirotto A. A programmable 10b up-to-6MS/s SAR-ADC featuring constant-FoM with on-chip reference voltage buffers. In Proc. ESSCIRC, Sep. 2006, pp. 500–3.

    Google Scholar 

  2. Harikumar P, Wikner JJ. Design of a reference voltage buffer for a 10-bit 50 MS/s SAR ADC in 65 nm CMOS. In Proc. IEEE ISCAS, May 2015, pp. 249–52.

    Google Scholar 

  3. Razavi B. Design of analog CMOS integrated circuits. Columbus: McGraw-Hill Education; 2000.

    Google Scholar 

  4. Vita GD, Iannaccone G. A sub-1-V, 10 ppm/°C, nanopower voltage reference generator. IEEE J Solid State Circuits. 2007;42(7):1536–42.

    Google Scholar 

  5. Magnelli L, Crupi F, Corsonello P, Pace C, Iannaccone G. A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference. IEEE J Solid State Circuits. 2011;46(2):465–74.

    Article  Google Scholar 

  6. Souri K, Chae Y, Ponomarev Y, Makinwa KAA. A precision DTMOST-based temperature sensor. ESSCIRC. 2011;12–16:279–82.

    Google Scholar 

  7. Vence A, Chittori C, Bosi A, Nani C. A 0.076 mm2 12 b 26.5 mW 600 MS/s 4-way interleaved subranging SAR-∆∑ ADC with on-chip buffer in 28 nm CMOS. IEEE J Solid State Circuits. 2016;51(12):2951–62.

    Article  Google Scholar 

  8. Harpe P, Cantatore E, van Roermund A. An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1dB SNDR. ISSCC Dig Tech Papers, 2014, pp. 194–195.

    Google Scholar 

  9. Liu S, Shen Y, Zhu Z. A 12-Bit 10 MS/s SAR ADC With High Linearity and Energy-Efficient Switching. IEEE Trans Circuits Syst I, Reg Papers. 2016;63(10):1616–27.

    Article  MathSciNet  Google Scholar 

  10. Harpe P, Zhou C, van der Meijs NP, Wang X, Philips K, Dolmans G, de Groot H. A 26 μW 8-bit 10 MS/s asynchronous SAR ADC for low energy radios. IEEE J Solid State Circuits. 2011;46(7):1585–95.

    Article  Google Scholar 

  11. Liu C-C, Chang S-J, Huang G-Y, Lin Y-Z, Huang C-M. A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18μm CMOS. Symp On VLSI Circuits, June 2010, pp. 241–2.

    Google Scholar 

  12. Tai H-Y, Hu Y-S, Chen H-W, Chen H-S. A 0.85fJ/conversion-step 10b 200kS/s Subranging SAR ADC in 40nm CMOS. ISSCC Dig. Tech. Papers, Feb. 2014, pp. 196–7.

    Google Scholar 

  13. Liu M, Pelzers K, van Dommele R, van Roermund A, Harpe P. A 106nW 10 b 80 kS/s SAR ADC with duty-cycled reference generation in 65 nm CMOS. IEEE J Solid-State Circuits. 2016;51(10):2435–45.

    Article  Google Scholar 

  14. Liu M, van Roermund A, Harpe P. A 7.1-fJ/conversion-step 88-dB SFDR SAR ADC with energy-free “swap to reset”. IEEE J Solid State Circuits. 2017;52(11):2979–90.

    Article  Google Scholar 

  15. Liu M, van Roermund A, Harpe P. A 10b 20MS/s SAR ADC with a low-power and area-efficient DAC-compensated reference. ESSCIRC, Sep. 2017, pp. 231–4.

    Google Scholar 

  16. Schemmert W, Zimmer G. Threshold-voltage sensitivity of ion-implanted m.o.s. transistors due to process variations. Electron Lett. 1974;10:151–2.

    Article  Google Scholar 

  17. Song B-S, Gray PR. Threshold-voltage temperature drift in ion-implanted MOS transistors. IEEE J Solid State Circuits. 1982;17(2):291–8.

    Article  Google Scholar 

  18. van Elzakker M, van Tuijl E, Geraedts P, Schinkel D, Klumperink EAM, Nauta B. A 10-bit charge-redistribution ADC consuming 1.9μW at 1MS/s. IEEE J Solid State Circuits. 2010;45(5):1007–15.

    Article  Google Scholar 

  19. Ivanov V, Brederlow R, Gerber J. An ultra-low power bandgap operational at supply from 0.75 V. IEEE J Solid State Circuits. 2012;47(7):1515–23.

    Article  Google Scholar 

  20. Osaki Y, Hirose T, Kuroki N, Numa M. 1.2-V supply, 100-nW, 1.09-V bandgap and 0.7-V supply, 52.5-nW, 0.55-V subbandgap reference circuits for nanowatt CMOS LSIs. IEEE J Solid State Circuits. 2013;48(6):1530–8.

    Article  Google Scholar 

  21. Shrivastava A, Craig K, Roberts NE, Wentzloff DD, Calhoun BH. A 32nW bandgap reference voltage operational from 0.5V supply for ultra-low power systems. ISSCC Dig Tech Papers, Feb. 2015, pp. 94–5.

    Google Scholar 

  22. Chen Y-J, Hsieh C-C. A 0.4V 2.02fJ/conversion-step 10-bit hybrid SAR ADC with time-domain Quantizer in 90nm CMOS. IEEE Symp VLSI Circuits, Jun. 2014, pp. 35–6.

    Google Scholar 

  23. Liou C-Y, Hsieh C-C. A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge average switching DAC in 90nm CMOS. ISSCC Dig. Tech. Papers, Feb. 2013, pp. 280–1.

    Google Scholar 

  24. Harpe P, Cantatore E, van Roermund A. A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with data-driven noise reduction. ISSCC Dig. Tech. Papers, Feb. 2013, pp. 270–1.

    Google Scholar 

  25. Harpe P, Gao H, van Dommele R, Cantatore E, van Roermund A. A 3nW signal-acquisition IC integrating an amplifier with 2.1 NEF and a 1.5fJ/conv-step ADC. ISSCC Dig. Tech. Papers, Feb. 2015, pp. 382–3.

    Google Scholar 

  26. Chang Y-K, Wang C-S, Wang C-K. A 8-bit 500 kS/s low power SAR ADC for bio-medical application. ASSCC Dig Tech Papers, Nov. 2007, pp. 228–31.

    Google Scholar 

  27. Liu C-C, Chang S-J, Huang G-Y, Lin Y-Z. A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J Solid State Circuits. 2010;45(4):731–40.

    Article  Google Scholar 

  28. Hariprasath V, Guerber J, Lee S-H, Moon U-K. Merged capacitor switching based SAR ADC with highest switching energy-efficiency. Electron Lett. 2010;46(9):620–1.

    Article  Google Scholar 

  29. Lin Y-Z, Chang S-J, Shyu Y-T, Huang G-Y, Liu C-C. A 0.9-V 11-bit 25-MS/s binary-search SAR ADC in 90-nm CMOS. ASSCC Dig. Tech. Papers, Nov. 2011, pp. 69–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoqiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, M., Pelzers, K., van Dommele, R., van Roermund, A., Harpe, P. (2019). Nanopower SAR ADCs with Reference Voltage Generation. In: Makinwa, K., Baschirotto, A., Harpe, P. (eds) Low-Power Analog Techniques, Sensors for Mobile Devices, and Energy Efficient Amplifiers . Springer, Cham. https://doi.org/10.1007/978-3-319-97870-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97870-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97869-7

  • Online ISBN: 978-3-319-97870-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics