Skip to main content

Abstract

Audio interfaces are among the most popular interfaces between man and machines. Such interfaces are based on microphones, whose efficiency expressed in terms of performance/power consumption is becoming one of the crucial parameters for the success on the market. In this chapter, the main specifications of typical microphone interfaces are illustrated to exhibit the advances in their development toward the maximization of their efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To achieve 20 Hz cutoff frequency with a 10-kΩ input resistance, the AC-coupling caps must be of the order of 1 μF. While 1-μF ceramic capacitors are widely available even in very small form factor, their large voltage coefficient can create a significant nonlinearity at low frequencies. For this reason, it is strongly preferable to utilize capacitors in the order of 10 nF, which requires a preamplifier input impedance in the order of 1 MΩ.

References

  1. Hsu YC, et al. Issues in path toward integrated acoustic sensor system on chip. In: Proceedings of IEEE sensors; Lecce, Italy; 2008. p. 585–8.

    Google Scholar 

  2. Malcovati P, Maloberti F. Interface circuitry and microsystems. In: Korvink J, Paul O, editors. MEMS: a practical guide to design, analysis and applications. Dordrecht: Springer; 2005. p. 901–42.

    Google Scholar 

  3. Bajdechi O, Huijsing JH. A 1.8-V ΔΣ modulator interface for an electret microphone with on-chip reference. IEEE J Solid-State Circuits. 2002;37:279–85.

    Article  Google Scholar 

  4. Chiang CT, Huang YC. A 14-bit oversampled delta-sigma modulator for silicon condenser microphones. In: Proceedings of IEEE IMTC; Singapore; 2009. p. 1055–8.

    Google Scholar 

  5. Pernici S, et al. Fully integrated voiceband codec in a standard digital CMOS technology. IEEE J Solid-State Circuits. 2004;39:1331–4.

    Article  Google Scholar 

  6. van der Zwan EJ, Dijkmans EC. A 0.2-mW CMOS ΣΔ modulator for speech coding with 80 dB dynamic range. IEEE J Solid-State Circuits. 1996;31:1873–80.

    Article  Google Scholar 

  7. Zare-Hoseini H, et al. A low-power continuous-time ΔΣ modulator for electret microphone applications. In: Proceedings of IEEE ASSCC; Beijing, China; 2010. p. 1–4.

    Google Scholar 

  8. Jawed SA, et al. A 828-mW 1.8-V 80-dB dynamic-range readout interface for a MEMS capacitive microphone. In: Proceedings of ESSCIRC; Edinburgh, UK; 2008. p. 442–5.

    Google Scholar 

  9. Picolli L, et al. A 1.0-mW, 71-dB SNDR, fourth-order ΣΔ interface circuit for MEMS microphones. Analog Integr Circuits Sig Process. 2011;66:223–33.

    Article  Google Scholar 

  10. Le HB, et al. A regulator-free 84-dB DR audio-band ADC for compact digital microphones. In: Proceedings of IEEE ASSCC; Beijing, China; 2010. p. 1–4.

    Google Scholar 

  11. Citakovic J, et al. A compact CMOS MEMS microphone with 66-dB SNR. In: IEEE ISSCC digest of technical papers; San Francisco, USA; 2009. p. 350–1.

    Google Scholar 

  12. Weigold JW, et al. A MEMS condenser microphone for consumer applications. In: Proceedings of IEEE MEMS; Istanbul, Turkey; 2006. p. 86–9.

    Google Scholar 

  13. Scheeper PR, et al. A review of silicon microphones. Sensors Actuators A. 1994;44(1):1–11.

    Article  Google Scholar 

  14. Bergqvist J, Gobet J. Capacitive microphone with a surface micromachined backplate using electroplating technology. J Microelectromech Syst. 1994;3(2):69–75.

    Article  Google Scholar 

  15. Kasai T, et al. Novel concept for a MEMS microphone with dual channels for an ultrawide dynamic range. In: Proceedings of IEEE MEMS; Cancun, Mexico; 2011. p. 605–8.

    Google Scholar 

  16. Leinenbach C, et al. A new capacitive type MEMS microphone. In: Proceedings of IEEE MEMS; Wanchai, Hong Kong, China; 2010. p. 659–62.

    Google Scholar 

  17. Martin DT, et al. A micromachined dual-backplate capacitive microphone for aeroacoustic measurements. J Microelectromech Syst. 2007;16(6):1289–302.

    Article  Google Scholar 

  18. Zou QB, et al. Design and fabrication of silicon condenser microphone using corrugated diaphragm technique. J Microelectromech Syst. 1996;5(3):197–204.

    Article  Google Scholar 

  19. InvenSense Application Note AN-1003. Recommendations for mounting and connecting InvenSense MEMS microphones, Online.

    Google Scholar 

  20. Knowles Application Note AN-16. SiSonic design guide, Online.

    Google Scholar 

  21. Nicollini G, et al. A high-performance analog front-end 14-bit CODEC for 2.7-V digital cellular phones. IEEE J Solid-State Circuits. 1998;33:1158–67.

    Article  Google Scholar 

  22. Barbieri A, Nicollini G. 100+ dB A-weighted SNR microphone preamplifier with on-chip decoupling capacitors. IEEE J Solid-State Circuits. 2012;47:2737–50.

    Article  Google Scholar 

  23. Croce M, et al. Cap-less audio preamplifiers for silicon microphones. In: Proceedings of IEEE sensors, Orlando, FL, USA; 2016. p. 943–5.

    Google Scholar 

  24. Croce M, et al. MEMS microphone fully-integrated CMOS cap-less preamplifiers. In: Proceedings of IEEE PRIME, Giardini Naxos, Taormina, Italy; 2017. p. 37–40.

    Google Scholar 

  25. Jiang X, et al. A low-power, high-fidelity stereo audio CODEC in 0.13-μm CMOS. IEEE J Solid-State Circuits. 2012;47:1221–31.

    Article  Google Scholar 

  26. Du D, Odame KM. A bandwidth-adaptive preamplifier. IEEE J Solid-State Circuits. 2013;48:2142–53.

    Article  Google Scholar 

  27. Tsividis Y, et al. Internally varying analog circuits minimize power dissipation. IEEE Circuits Device Mag. 2003;19:63–72.

    Article  Google Scholar 

  28. De Berti C, et al. A 106-dB A-weighted DR low-power continuous-time ΣΔ modulator for MEMS microphones. IEEE J. Solid-State Circuits. 2016;51:1607–18.

    Article  Google Scholar 

  29. Murman B. ADC performance survey 1997–2017. Online. http://web.stanford.edu/~murmann/adcsurvey.html.

  30. De Berti C, et al. Colored clock jitter model in audio continuous-time ΣΔ modulators. In: Proceedings of IEEE NEWCAS, Grenoble, France; 2015. p. 14B5/1–4.

    Google Scholar 

  31. Dörrer L, et al. A 3-mW 74-dB SNR 2-MHz continuous-time delta-sigma ADC with a tracking ADC quantizer in 0.13-μm CMOS. IEEE J Solid-State Circuits. 2005;40:2416–27.

    Article  Google Scholar 

  32. Nguyen K, et al. A 108-dB SNR, 1.1-mW oversampling audio DAC with a three-level DEM technique. IEEE J Solid-State Circuits. 2008;43:2592–600.

    Article  Google Scholar 

  33. Crespi L., et al. Audio digital-to-analog converter with enhanced dynamic range. US Patent Application No. 62/425,510, 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Crespi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crespi, L., De Berti, C., Friend, B., Malcovati, P., Baschirotto, A. (2019). Low Power Microphone Front-Ends. In: Makinwa, K., Baschirotto, A., Harpe, P. (eds) Low-Power Analog Techniques, Sensors for Mobile Devices, and Energy Efficient Amplifiers . Springer, Cham. https://doi.org/10.1007/978-3-319-97870-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97870-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97869-7

  • Online ISBN: 978-3-319-97870-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics