Skip to main content

Abstract

The continuous feature size scaling in CMOS has enabled the system to decrease power consumption. However, the operational amplifiers, which have been the backbone of analog circuits, face significant challenges in the scaled CMOS technology. Dynamic amplifiers based on CMOS inverters attract again and have become essential to maximize energy efficiency in all analog building blocks. This chapter discusses the design of energy-efficient inverter-based amplifiers that include operating principle and biasing techniques. It also covers recent advances to prevent performance degradation of inverter-based circuits and design examples of the state-of-the-art inverter-based amplifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sansen WMC. Low-noise energy-efficient amplifier design ISSCC Forum: advanced IC design for ultra low-noise sensing, 2016.

    Google Scholar 

  2. Sansen WMC. Opamps, Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems, Opamps, Gm-Blocks or Inverters?. AACD 2015, Springer; 2016.

    Book  Google Scholar 

  3. Copeland MA, Rabaey JM. Dynamic amplifier for MOS technology. Electron Lett. 1979;15(10):301–2.

    Article  Google Scholar 

  4. Hosticka BJ. Dynamic CMOS amplifiers. IEEE J Solid State Circuits. 1980;SC-15(5):887–94.

    Google Scholar 

  5. Krummenacher F, Vittoz E. Class-AB CMOS amplifier for micropower SC filters. Electron Lett. 1981;17(13):433–4.

    Article  Google Scholar 

  6. Chae Y, Han G. Low voltage, low power inverter-based switched-capacitor delta-sigma modulator. IEEE J SolidState Circuits. 2009;24(2):458–72.

    Article  Google Scholar 

  7. Chae Y, Han G. A low power sigma-delta modulator using class-C inverter. Symposium on VLSI Circuits, June 2007, p. 240–1.

    Google Scholar 

  8. Chae Y, Lee I, Han G. A 0.7-V 36-μW 85 dB-DR audio ΔΣ modulator using class-C inverter. ISSCC, Feb 2008, p. 490–1.

    Google Scholar 

  9. Lee I, Han G, Chae Y. A 2mW, 50dB DR, 10MHz BW 5× interleaved bandpass delta-sigma modulator at 50 MHz IF. IEEE Trans Circuits Syst I. 2015;62(1):80–9.

    Article  Google Scholar 

  10. van Veldhoven RHM, Rutten R, Breems LJ. An inverter-based hybrid ΣΔ modulator. ISSCC, Feb 2008, p. 492–3.

    Google Scholar 

  11. Krummenacher F. Micropower switched capacitor biquadratic cell. IEEE J Solid State Circuits. 1981;SC-17(3):507–12.

    Article  Google Scholar 

  12. Michel F, Steyaert MSJ. A 250 mV 7.5 μW 61 dB SNDR SC ΔΣ modulator using near-threshold-voltage-biased inverter amplifiers in 130 nm CMOS. IEEE J Solid State Circuits. 2012;47(3):709–21.

    Article  Google Scholar 

  13. Wang J, Matsuoka T, Taniguchi K. A 0.5 V feedforward delta-sigma modulator with inverter-based integrator. In: Proc. ESSCIRC, Sept 2009, p. 328–31.

    Google Scholar 

  14. Chae Y, Souri K, Makinwa KAA. A 6.3 μW 20 bit incremental zoom-ADC with 6ppm INL and 1μV offset. IEEE J Solid State Circuits. 2013;48(12):3019–27.

    Article  Google Scholar 

  15. Lee S, Jo W, Song S, Chae Y. A 300-μW audio ΔΣ modulator with 100.5-dB DR using dynamic bias inverter. IEEE Trans Circuits Syst I. 2016;63(11):1866–75.

    Article  Google Scholar 

  16. Gonen B, Sebastiano F, Quan R, van Veldhoven R, Makinwa KAA. A dynamic zoom ADC with 109-dB DR for audio applications. IEEE J SolidState Circuits. 2017;52(6):1542–50.

    Article  Google Scholar 

  17. Nauta B. A CMOS transconductance-C filter technique for very high frequencies. IEEE J Solid State Circuits. 1992;27:142–53.

    Article  Google Scholar 

  18. Christen T. A 15-bit 140-μW scalable-bandwidth inverter-based ΔΣ modulator for a MEMS microphone with digital output. IEEE J Solid State Circuits. 2013;48(7):1605–14.

    Article  Google Scholar 

  19. Breems, L. et al. A 2.2 GHz continuous-time ΔΣ ADC with −102 dBc THD and 25 MHz bandwidth. IEEE J Solid State Circuits. 2016;51(12):2906–16.

    Article  Google Scholar 

  20. Luo H, Han Y, Cheung RC, Liu X, Cao T. A 0.8-V 230-μW 98-dB DR inverter-based ΣΔ modulator for audio applications. IEEE J Solid State Circuits. 2013;48(10):2430–41.

    Article  Google Scholar 

  21. Lechevallier J, Struiksma R, Sherry H, Cathelin A, Klumperink E, Nauta B. A forward-body-bias tuned 450MHz Gm-C 3rd-order low-pass filter in 28nm UTBB FD-SOI with >1dBVp IIP3 over a 0.7-to-1V supply. ISSCC, 2015, p. 96–7.

    Google Scholar 

  22. Chae Y, Cheon J, Lim S, Kwon M, Yoo K, Jung W, Lee DH, Ham S, Han G. A 2.1 M Pixels, 120 frame/s CMOS image sensor with column-parallel ΔΣ ADC architecture. IEEE J Solid State Circuits. 2011;46(1):236–47.

    Article  Google Scholar 

  23. Gregoire B, Moon U-K. An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain. IEEE J Solid State Circuits. 2008;43(12):2620–30.

    Article  Google Scholar 

  24. Zhang H, Tan Z, Nguyen K. Inverter-based low-power delta–sigma modulator using correlated level shifting technique. Electron Lett. 2017;53(25):1163–4.

    Google Scholar 

  25. Hershberg B, Weaver S, Sobue K, Takeuchi S, Hamashita K, Moon Ring U-K. Amplifiers for switched capacitor circuits. IEEE J Solid-State Circuits. 2012;47(12):2928–42.

    Article  Google Scholar 

  26. Lim Y, Flynn MP. A 100 MS/s, 10.5 bit, 2.46 mW comparator-less pipeline ADC using self-biased ring amplifiers. IEEE J Solid State Circuits. 2015;50(10):2331–41.

    Article  Google Scholar 

  27. Lim Y, Flynn MP. A calibration-free 2.3 mW 73.2 dB SNDR 15b 100 MS/s four-stage fully differential ring amplifier based SAR-assisted pipeline ADC. Symposium on VLSI Circuits, 2017, p. C98–9.

    Google Scholar 

  28. Kim JK-R, Murmann B. A 12-b, 30-MS/s, 2.95-mW pipelined ADC using single-stage class-AB amplifiers and deterministic background calibration. IEEE J Solid State Circuits. 2012;47(9):2141–51.

    Article  Google Scholar 

  29. Verbruggen B, Deguchi K, Malki B, Craninckx J. A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS. Symposium on VLSI Circuits, 2014.

    Google Scholar 

  30. Akter MS, Makinwa KAA, Bult K. A capacitively degenerated 100-dB linear 20–150 MS/s dynamic amplifier. IEEE J Solid State Circuits. 2018;53:1115–26.

    Article  Google Scholar 

  31. Gregorian R. High-resolution switched-capacitor D/A converter. J Microelectron. 1981;12:10–13.

    Article  Google Scholar 

  32. Nagaraj K, Vlach J, Viswanathan TR, Singhal K. Switched-capacitor integrator with reduced sensitivity to amplifier gain. Electron Lett. 1986;22(21):1103–5.

    Article  Google Scholar 

  33. Shen L, Lu N, Sun N. A 1-V 0.25-μW inverter stacking amplifier with 1.07 noise efficiency factor. IEEE J Solid State Circuits. 2018;53(3):896–905.

    Article  Google Scholar 

  34. Lin J, Miyahara M, Matsuzawa A. A 15.5 dB, wide signal swing, dynamic amplifier using a common-mode voltage detection technique. In: Proc. IEEE Int. Symp. Circuits Syst, 2011, p. 21–4.

    Google Scholar 

  35. van der Goes F, Ward CM, Astgimath S, Yan H, Riley J, Zeng Z, Mulder J, Wang S, Bult K. A 1.5 mW 68 dB SNDR 80 Ms/s 2 interleaved pipelined SAR ADC in 28 nm CMOS. IEEE J Solid State Circuits. 2014;49(12):2835–45.

    Google Scholar 

  36. Chiang S-H, Sun H, Razavi B. A 10-Bit 800-MHz 19-mW CMOS ADC. IEEE J Solid State Circuits. 2014;49(4):935–49.

    Article  Google Scholar 

  37. Iguchi S, Sakurai T, Takamiya M. A low-power CMOS crystal oscillator using a stacked-amplifier architecture. IEEE J Solid State Circuits. 2017;52(11):3006–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngcheol Chae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chae, Y. (2019). Energy-Efficient Inverter-Based Amplifiers. In: Makinwa, K., Baschirotto, A., Harpe, P. (eds) Low-Power Analog Techniques, Sensors for Mobile Devices, and Energy Efficient Amplifiers . Springer, Cham. https://doi.org/10.1007/978-3-319-97870-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97870-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97869-7

  • Online ISBN: 978-3-319-97870-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics