Skip to main content

Abstract

This chapter presents two cost-effective sensors that measure ambient carbon dioxide (CO2) concentration, intended for application in smart ventilation systems in buildings or in mobile devices. Both sensors employ a suspended hot-wire transducer to detect the CO2-dependent thermal conductivity (TC) of the ambient air. The resistive transducer is realized in the VIA layer of a standard CMOS process using a single etch step. The first sensor determines the transducer’s CO2-dependent thermal resistance to the surrounding air by measuring its steady-state temperature rise and power dissipation. A ratiometric measurement is realized by employing an identical but capped transducer as a reference. An incremental delta-sigma ADC digitizes the temperature and power ratios of the transducers, from which the ratio of the thermal resistances is calculated. The second sensor is based on a transient measurement of the CO2-dependent thermal time constant of the transducer. The readout circuit periodically heats up the transducer and uses a phase-domain delta-sigma modulator to digitize the CO2-dependent phase shift of the resulting temperature transients. Compared to the ratiometric steady-state measurement, this approach significantly reduces the measurement time and improves the energy efficiency, resulting in a state-of-the-art CO2 resolution of 94 ppm at an energy consumption of 12 mJ per measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emmerich SJ, Persily AK. Literature review on CO2-based demand-controlled ventilation. ASHRAE Trans. 1997;103:229–43.

    Google Scholar 

  2. SenseAir K30 datasheet, SenseAir [Online]. Available: http://www.senseair.com/.

  3. SGX Sensortech IR11BD datasheet, SGX Sensortech [Online]. Available: http://www.sgxsensortech.com/.

  4. Frodl R, Tille T. A high-precision NDIR CO2 gas sensor for automotive applications. IEEE Sensors J. 2006;6(6):1697–705.

    Article  Google Scholar 

  5. Cai Z, et al. A ratiometric readout circuit for thermal-conductivity-based resistive CO2 sensors. IEEE J Solid-State Circuits. 2016;51(10):2463–74.

    Article  Google Scholar 

  6. Kliche K, et al. Sensor for thermal gas analysis based on micromachined silicon-microwires. IEEE Sensors J. 2013;13(7):2626–35.

    Article  Google Scholar 

  7. Kliche K, et al. Sensor for gas analysis based on thermal conductivity, specific heat capacity and thermal diffusivity. In: Proceedings of IEEE international conference on MEMS. 2011 p. 1189–92.

    Google Scholar 

  8. XEN-5310 datasheet. Xensor Integration [Online]. Available: http://www.xensor.nl/.

  9. Cai Z, et al. A phase-domain readout circuit for a CMOS-compatible hot-wire CO2 sensor. IEEE J. Solid-State Circuits. (in press) doi: 10.1109/JSSC.2018.2866374

    Article  Google Scholar 

  10. Simon I, Arndt M. Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications. Sens. Actuators A: Phys. 2002;97–98:104–8.

    Article  Google Scholar 

  11. Ali SZ, et al. Tungsten-based SOI microhotplates for smart gas sensors. J Microelectromech Syst. 2008;17:1408–17.

    Article  Google Scholar 

  12. Cai Z, et al. An integrated carbon dioxide sensor based on ratiometric thermal-conductivity measurement. In: Proceedings of IEEE international conference on solid-state sensors, actuators and microsystems (Transducers ’15). 2015. p. 622–5.

    Google Scholar 

  13. Bult K, Geelen GJGM. A fast-settling CMOS op amp for SC circuits with 90-dB DC gain. IEEE J Solid-State Circuits. 1990;25(6):1379–84.

    Article  Google Scholar 

  14. Fiedler H, et al. A 5-bit building block for 20 MHz A/D converters. IEEE J Solid-State Circuits. 1981;16(3):151–5.

    Article  Google Scholar 

  15. FIGARO TGS8100 datasheet (rev06), FIGARO [Online]. Available: http://www.figaro.co.jp/.

  16. Mahdavifar A, et al. Transient thermal response of micro-thermal conductivity detector (μTCD) for the identification of gas mixtures: an ultra-fast and low power method. Microsyst Nanoeng. 2015;1:15025.

    Article  Google Scholar 

  17. van Vroonhoven C, de Graaf G, Makinwa KAA. Phase readout of thermal conductivity-based gas sensors. In: Proceedings of IEEE International Workshop on Advances in Sensors and Interfaces (IWASI). 2011. p. 199–202.

    Google Scholar 

  18. van Vroonhoven CPL, Makinwa KAA. A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ±0.5°C (3σ) from –40 to 105°C. In: Digest ISSCC. 2008. p. 576–7.

    Google Scholar 

  19. Kashmiri M, Xia S, Makinwa KAA. A temperature-to-digital converter based on an optimized electrothermal filter. IEEE J Solid-State Circuits. 2009;44(7):2026–35.

    Article  Google Scholar 

  20. Kashmiri SM, Souri K, Makinwa KAA. A scaled thermal-diffusivity-based 16 MHz frequency reference in 0.16 μm CMOS. IEEE J Solid-State Circuits. 2012;47(7):1535–45.

    Article  Google Scholar 

  21. Vincent TA, Gardner JW. A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels. Sens Actuators B Chem. 2016;236:954–64.

    Article  Google Scholar 

Download references

Acknowledgments

This work was in part supported by NXP Semiconductors, The Netherlands, and in part by ams AG, The Netherlands. The authors want to thank Lukasz Pakula and Zu-yao Chang for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyu Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cai, Z., van Veldhoven, R., Suy, H., de Graaf, G., Makinwa, K.A.A., Pertijs, M. (2019). CMOS-Compatible Carbon Dioxide Sensors. In: Makinwa, K., Baschirotto, A., Harpe, P. (eds) Low-Power Analog Techniques, Sensors for Mobile Devices, and Energy Efficient Amplifiers . Springer, Cham. https://doi.org/10.1007/978-3-319-97870-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97870-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97869-7

  • Online ISBN: 978-3-319-97870-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics