Skip to main content

Mechanism of Compensation After Unilateral Loss

  • Chapter
  • First Online:
  • 2118 Accesses

Abstract

A variety of etiologies are responsible for loss of vestibular function. These include aging, head trauma, ototoxic drugs, infection, inflammation, or tumors. Unilateral peripheral vestibular weakness affects a patient’s posture, oculomotor control, spatial perception, and navigation. Patients experience postural asymmetry and gait problems related to impaired vestibulospinal reflex, visual disturbances as a result of impaired vestibular-ocular reflex, and internal spatial disorientation. Most patients recover functionally over weeks and months through a process called vestibular compensation. In unilateral peripheral vestibular loss, vestibular compensation engages neuronal and behavioral plasticity in the central nervous system to overcome the loss of unilateral vestibular input. The time course and exact mechanism of vestibular recovery depend on the etiology of vestibular loss and cannot be generalized for all patients. However, knowledge of several processes of vestibular compensation can guide the treatment and rehabilitation for unilateral vestibular loss.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balaban CD, Hoffer ME, Gottshall KR. Top-down approach to vestibular compensation: translational lessons from vestibular rehabilitation. Brain Res. 2012;1482:101–11.

    Article  CAS  Google Scholar 

  2. Becker-Bense S, Dieterich M, Buchholz HG, Bartenstein P, Schreckenberger M, Brandt T. The differential effects of acute right- vs left-sided vestibular failure on brain metabolism. Brain Struct Funct. 2014;219:1355–67.

    Article  CAS  Google Scholar 

  3. Bense S, Bartenstein P, Lochmann M, Schlindwein P, Brandt T, Dieterich M. Metabolic changes in vestibular and visual cortices in acute vestibular neuritis. Ann Neurol. 2004;56:624–30.

    Article  Google Scholar 

  4. Brandt T, Daroff RB. Physical therapy for benign paroxysmal positional vertigo. Arch Otolaryngol. 1980;106:484–5.

    Article  CAS  Google Scholar 

  5. Bronstein AM, Golding FJ, Gresty MA. Vertigo and dizziness from environmental motion: visual vertigo, motion sickness, and drivers’ disorientation. Semin Neurol. 2013;33:219–30.

    Article  Google Scholar 

  6. Chang WC, Yang YR, Hsu LC, Chern CM, Wang RY. Balance improvement in patients with benign paroxysmal positional vertigo. Clin Rehabil. 2008;22:338–47.

    Article  CAS  Google Scholar 

  7. Darlington CL, Smith PF. Molecular mechanisms of recovery from vestibular damage in mammals: recent advances. Prog Neurobiol. 2000;62:313–25.

    Article  CAS  Google Scholar 

  8. Deutschlander A, Hofner K, Kalla R, Stephan T, Dera T, Glausauer S. Unilateral vestibular failure suppresses cortical visual motion processing. Brain. 2008;131:1025–34.

    Article  Google Scholar 

  9. Deveze A, Bernard-Demanze L, Xavier F, Lavieille JP, Elziere M. Vestibular compensation and vestibular rehabilitation. Current concepts and new trends. Neurophysiol Clin. 2014;44(1):49–57.

    Article  CAS  Google Scholar 

  10. Dutheil S, Brezun M, Leonard J, Lacour M, Tighilet B. Neurogenesis and astrogenesis contribution to recovery of vestibular functions in the adult cat following unilateral vestibular neurectomy: cellular and behavioral evidence. Neuroscience. 2009;164:1444–56.

    Article  CAS  Google Scholar 

  11. Dutheil S, Lacour M, Tighilet B. Neurogenic potential of the vestibular nuclei and behavioural recovery time course in the adult cat are governed by the nature of the vestibular damage. PLoS One. 2011;6(8):e22262.

    Article  CAS  Google Scholar 

  12. Eckhard-Henn A, Best C, Bense S, Breuer P, Diener G, Tschan R, Dieterich M. Psychiatric comorbidity in different organic vertigo syndromes. J Neurol. 2008;255:420–8.

    Article  Google Scholar 

  13. Gliddon CM, Darlington CL, Smith PF. Activation of the hypothalamic-pituitary-adrenal axis following vestibular deafferentation in pigmented guinea-pigs. Brain Res. 2003;964:306–10.

    Article  CAS  Google Scholar 

  14. Helmchen C, Klinkenstein J, Machner B, Rambold H, Mohr C, Sander T. Structural changes in the human brain following vestibular neuritis indicate central vestibular compensation. Ann N Y Acad Sci. 2009;1164:104–15.

    Article  Google Scholar 

  15. Helmchen C, Klinkenstein JC, Kruger A, Gliemroth J, Mohr C, Sander T. Structural brain changes following peripheral vestibulo-cochlear lesion may indicate multisensory compensation. J Neurol Neurosurg Psychiatry. 2011;82:309–16.

    Article  Google Scholar 

  16. Helmchen C, Ye Z, Sprenger A, Munte TF. Changes in resting-state fMRI in vestibular neuritis. Brain Struct Funct. 2014;219:1889–900.

    Article  Google Scholar 

  17. Hong SK, Kim JH, Kim HJ, Lee HJ. Changes in the gray matter volume during compensation after vestibular neuritis: a longitudinal VBM study. Restor Neurol Neurosci. 2014;32:663–73.

    PubMed  Google Scholar 

  18. Horak FB. Postural compensation for vestibular loss. Restor Neurol Neurosci. 2010;28:57–68.

    PubMed  PubMed Central  Google Scholar 

  19. Horii A, Masumura C, Smith PF, Darlington CL, Kitahara T, Uno A. Microarray of gene expression in the rat vestibular nucleus complex following unilateral vestibular deafferentation. J Neurochem. 2004;91:975–82.

    Article  CAS  Google Scholar 

  20. Horner KC, Cazals Y. Stress hormones in Meniere’s disease and acoustic neuroma. Brain Res Bull. 2005;66:1–8.

    Article  CAS  Google Scholar 

  21. Lacour M, Barthelemy J, Borel L, Magnan J, Xerri C, Chays A, Ouaknine M. Sensory strategies in human postural control before and after unilateral vestibular neurectomy. Exp Brain Res. 1997;115:300–10.

    Article  CAS  Google Scholar 

  22. Lacour M, Bernard-Demanze L. Interactions between vestibular compensation mechanisms and vestibular rehabilita- tion therapy: ten recommendations for optimal functional recovery. Front Neurol. 2014;5:285–97.

    PubMed  Google Scholar 

  23. Lacour M, Helmchen C, Vidal PP. Vestibular compensation: the neuro-otologist’s best friend. J Neurol. 2016;263(Suppl 1):S54–64.

    Article  Google Scholar 

  24. Lacour M, Roll JP, Appaix M. Modifications and development of spinal reflexes in the alert baboon (Papio papio) following a unilateral vestibular neurotomy. Brain Res. 1976;113:255–69.

    Article  CAS  Google Scholar 

  25. Lacour M. Restoration of vestibular function: basic aspects and practical advances for rehabilitation. Curr Med Res Opin. 2010;22:1651–9.

    Article  Google Scholar 

  26. Liberge M, Manrique C, Bernard-Demanze L, Lacour M. Changes in TNFa, NFkB and MnSOD protein in the vestibular nuclei after unilateral deafferentation. J Neuroinflammation. 2010;7:91–102.

    Article  CAS  Google Scholar 

  27. Lopez C, Lacour M, Magnan J, Borel L. Visual field dependence-independence before and after unilateral vestibular loss. Neuroreport. 2006;17:797–803.

    Article  Google Scholar 

  28. MacDougall HG, Curthoys IS. Plasticity during vestibular compensation: the role of saccades. Front Neurol. 2012;3:21.

    Article  Google Scholar 

  29. Mijovic T, Carriot J, Zeitouni A, Cullen KE. Head movements in patients with vestibular lesion: a novel approach to functional assessment in daily life setting. Otol Neurotol. 2014;35(10):348–57.

    Article  Google Scholar 

  30. Nyabenda A, Briart C, Deggouj N, Gersdorff M. Benefit of rotational exercises for patients with Meniere’s syndrome, method used by the ENT department of St-Luc university clinic. Ann Readapt Med Phys. 2003;46:607–14.

    Article  CAS  Google Scholar 

  31. Olabi B, Bergquist F, Dutia MB. Rebalancing the commissural system: mechanisms of vestibular compensation. J Vestib Res. 2009;19:201–7.

    PubMed  Google Scholar 

  32. Paterson JM, Short D, Flatman PW, Seckl JR, Aitken A, Dutia MB. Changes in protein expression in the rat medial vestibular nuclei during vestibular compensation. J Neurophysiol. 2006;575:777–88.

    CAS  Google Scholar 

  33. Ris L, de Waele C, Serafin M, Vidal PP, Godaux E. Neuronal activity in the ipsilateral vestibular nucleus following unilateral labyrinthectomy in the alert guinea pig. J Neurophysiol. 1995;74:2087–99.

    Article  CAS  Google Scholar 

  34. Saman Y, Bamiou DE, Gleeson M, Dutia MB. Interaction between stress and vestibular compensation: a review. Front Neurol. 2012;3:116.

    Article  Google Scholar 

  35. Smith PF, Curthoys IS. Neuronal activity in the ipsilateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res. 1988;444:308–19.

    Article  CAS  Google Scholar 

  36. Tighilet B, Brezun M, Gustav Dit Duflo S, Gaubert C, Lacour M. New neurons in the vestibular nuclei complex after unilateral vestibular neurectomy in the adult cat. Eur J Neurosci. 2007;25:47–58.

    Article  Google Scholar 

  37. Tighilet B, Manrique C, Lacour M. Stress axis plasticity during vestibular compensation in the cat. Neuroscience. 2009;160:716–30.

    Article  CAS  Google Scholar 

  38. Vibert N, Beraneck CAM, Bantikyan A, Vidal PP. Vestibular compensation modifies the sensitivity of vestibular neurons to inhibitory amino-acids. Neuroreport. 2000;11:1921–7.

    Article  CAS  Google Scholar 

  39. Zwergal A, Schlichtiger J, Xiong G, Beck R, Gunther L, Schniepp R, Schoberl F, Jahn K, Brandt T, et al. Sequential [18F] FDG lPET whole-brain imaging of central vestibular compensation: a model of deafferentation-induced brain plasticity. Brain Struct Funct. 2016;221(1):159–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Wilkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, S., Wilkinson, E. (2019). Mechanism of Compensation After Unilateral Loss. In: Babu, S., Schutt, C., Bojrab, D. (eds) Diagnosis and Treatment of Vestibular Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97858-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97858-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97857-4

  • Online ISBN: 978-3-319-97858-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics