Skip to main content

Processing Nanocomposites Based on Commodity Polymers

  • Chapter
  • First Online:
  • 649 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 278))

Abstract

Nanocomposites consisting of commodity polymers like polyethylene, polystyrene, polypropylene, and polyvinyl chloride have demonstrated good thermomechanical behavior and electrical properties. Common routes for producing polymer nanocomposites (PNCs) with commodity polymers involves either melt mixing, in situ polymerization, or solution mixing. However, the common processing techniques cannot adequately disperse nanoparticles (NPs) in the commodity polymer matrix. The chapter describes various strategies for dispersing NPs in commodity polymers, such as functionalization of the polymer, or preparing a nanocomposite. In addition, this chapter describes the structure–property relationships of commodity polymers after incorporation of NPs, along with their performance for specific applications. Finally, an outlook regarding the challenges, opportunities, and future trends in commodity PNCs is presented, along a summary of the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rosato DV, Rosato DV (2004) Reinforced plastics handbook. Elsevier, New York

    Google Scholar 

  2. Bhattacharya M (2016) Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9(4):262

    Article  ADS  Google Scholar 

  3. Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. Wiley, New Jersey

    Google Scholar 

  4. Gou J, Zhuge J, Liang F (2012) Processing of polymer nanocomposites. In: Manufacturing techniques for polymer matrix composites. Woodhead Publishing, Sawston, Cambridge, pp 95–115

    Chapter  Google Scholar 

  5. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  Google Scholar 

  6. Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design. CRC press, Boca Raton

    Book  Google Scholar 

  7. Gilbert M (2012) Poly (vinyl chloride)(PVC)-based nanocomposites. In: Advances in polymer nanocomposites. Elsevier, New York, pp 216–237

    Chapter  Google Scholar 

  8. Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C 23(6):763–772

    Article  Google Scholar 

  9. Ding C, Jia D, He H, Guo B, Hong H (2005) How organo-montmorillonite truly affects the structure and properties of polypropylene. Polym Testing 24(1):94–100

    Article  Google Scholar 

  10. Paul D, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    Article  Google Scholar 

  11. Pagacz J, Pielichowski K (2009) Preparation and characterization of PVC/montmorillonite nanocomposites—a review. J Vinyl Add Tech 15(2):61–76

    Google Scholar 

  12. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Func Mater 18(10):1518–1525

    Article  Google Scholar 

  13. Mural PKS, Sharma M, Madras G, Bose S (2015) A critical review on in situ reduction of graphene oxide during preparation of conducting polymeric nanocomposites. RSC Adv 5(41):32078–32087

    Article  Google Scholar 

  14. Berzin F, Flat J-J, Vergnes B (2013) Grafting of maleic anhydride on polypropylene by reactive extrusion: effect of maleic anhydride and peroxide concentrations on reaction yield and products characteristics. J Polym Eng 33(8):673–682

    Article  Google Scholar 

  15. Jancar J, Douglas J, Starr FW, Kumar S, Cassagnau P, Lesser A, Sternstein SS, Buehler M (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51(15):3321–3343

    Article  Google Scholar 

  16. Affdl J, Kardos J (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352

    Article  Google Scholar 

  17. Xu W, Liang G, Wang W, Tang S, He P, Pan WP (2003) PP–PP-g-MAH–Org-MMT nanocomposites. I. Intercalation behavior and microstructure. J Appl Polym Sci 88(14):3225–3231

    Article  Google Scholar 

  18. Cadek M, Coleman J, Ryan K, Nicolosi V, Bister G, Fonseca A, Nagy J, Szostak K, Beguin F, Blau W (2004) Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area. Nano Lett 4(2):353–356

    Article  ADS  Google Scholar 

  19. Haggenmueller R, Gommans H, Rinzler A, Fischer JE, Winey K (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330(3):219–225

    Article  ADS  Google Scholar 

  20. Thostenson ET, Chou T-W (2002) Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J Phys D Appl Phys 35(16):L77

    Article  ADS  Google Scholar 

  21. Strobl C, Schäflein C, Beierlein U, Ebbecke J, Wixforth A (2004) Carbon nanotube alignment by surface acoustic waves. Appl Phys Lett 85(8):1427–1429

    Article  ADS  Google Scholar 

  22. Chen X, Saito T, Yamada H, Matsushige K (2001) Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl Phys Lett 78(23):3714–3716

    Article  ADS  Google Scholar 

  23. Kumar MS, Kim T, Lee S, Song S, Yang J, Nahm K, Suh E-K (2004) Influence of electric field type on the assembly of single walled carbon nanotubes. Chem Phys Lett 383(3):235–239

    Article  ADS  Google Scholar 

  24. Camponeschi E, Vance R, Al-Haik M, Garmestani H, Tannenbaum R (2007) Properties of carbon nanotube–polymer composites aligned in a magnetic field. Carbon 45(10):2037–2046

    Article  Google Scholar 

  25. Xiao K, Zhang L, Zarudi I (2007) Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Compos Sci Technol 67(2):177–182

    Article  Google Scholar 

  26. Gorrasi G, Sarno M, Di Bartolomeo A, Sannino D, Ciambelli P, Vittoria V (2007) Incorporation of carbon nanotubes into polyethylene by high energy ball milling: morphology and physical properties. J Polym Sci, Part B: Polym Phys 45(5):597–606

    Article  ADS  Google Scholar 

  27. Dondero WE, Gorga RE (2006) Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding. J Polym Sci Part B Polym Phys 44(5):864–878

    Article  ADS  Google Scholar 

  28. Moore EM, Ortiz DL, Marla VT, Shambaugh RL, Grady BP (2004) Enhancing the strength of polypropylene fibers with carbon nanotubes. J Appl Polym Sci 93(6):2926–2933

    Article  Google Scholar 

  29. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870

    Article  ADS  Google Scholar 

  30. Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287(6):395–403

    Article  Google Scholar 

  31. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401

    Article  Google Scholar 

  32. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530

    Article  ADS  Google Scholar 

  33. Zheng W, Lu X, Wong SC (2004) Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci 91(5):2781–2788

    Article  Google Scholar 

  34. Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52(18):4001–4010

    Article  Google Scholar 

  35. Zhao J, Liu Y, Cheng J, Wu S, Wang Z, Hu H, Zhou C (2017) Reinforced polystyrene via solvent-exfoliated graphene. Polym Int 66(12):1827–1833

    Article  Google Scholar 

  36. Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S (2011) Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1):198–205

    Article  Google Scholar 

  37. Deshmukh K, Joshi GM (2014) Thermo-mechanical properties of poly (vinyl chloride)/graphene oxide as high performance nanocomposites. Polym Testing 34:211–219

    Article  Google Scholar 

  38. Tate RS, Fryer DS, Pasqualini S, Montague MF, de Pablo JJ, Nealey PF (2001) Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates. J Chem Phys 115(21):9982–9990

    Article  ADS  Google Scholar 

  39. Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8(8):1728–1734

    Article  Google Scholar 

  40. Liao K-H, Aoyama S, Abdala AA, Macosko C (2014) Does Graphene Change Tg of Nanocomposites? Macromolecules 47(23):8311–8319

    Article  ADS  Google Scholar 

  41. Majka TM, Leszczyńska A, Pielichowski K (2016) Thermal stability and degradation of polymer nanocomposites. In: Polymer nanocomposites. Springer, Heidelberg, pp 167–190

    Google Scholar 

  42. Blumstein A (1965) Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer. J Polym Sci Part A Polym Chem 3(7):2665–2672

    Google Scholar 

  43. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15(1):31–49

    Article  Google Scholar 

  44. Yang J, Lin Y, Wang J, Lai M, Li J, Liu J, Tong X, Cheng H (2005) Morphology, thermal stability, and dynamic mechanical properties of atactic polypropylene/carbon nanotube composites. J Appl Polym Sci 98(3):1087–1091

    Article  Google Scholar 

  45. Chatterjee A, Deopura B (2006) Thermal stability of polypropylene/carbon nanofiber composite. J Appl Polym Sci 100(5):3574–3578

    Article  Google Scholar 

  46. Chipara M, Lozano K, Hernandez A, Chipara M (2008) TGA analysis of polypropylene–carbon nanofibers composites. Polym Degrad Stab 93(4):871–876

    Article  Google Scholar 

  47. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944

    Article  Google Scholar 

  48. Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, Lin Y, Fee R, Connell JW, Sun YP (2009) Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv Mater 21(20):2088–2092

    Article  Google Scholar 

  49. Alam FE, Dai W, Yang M, Du S, Li X, Yu J, Jiang N, Lin C-T (2017) In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J Mater Chem A 5(13):6164–6169

    Article  Google Scholar 

  50. Yang Y, Gupta M, Zalameda J, Winfree W (2008) Dispersion behaviour, thermal and electrical conductivities of carbon nanotube-polystyrene nanocomposites. Micro Nano Letters 3(2):35–40

    Article  Google Scholar 

  51. Garboczi E, Snyder K, Douglas J, Thorpe M (1995) Geometrical percolation threshold of overlapping ellipsoids. Phys Rev E 52(1):819

    Article  ADS  Google Scholar 

  52. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282

    Article  ADS  Google Scholar 

  53. Chen X-M, Shen J-W, Huang W-Y (2002) Novel electrically conductive polypropylene/graphite nanocomposites. J Mater Sci Lett 21(3):213–214

    Article  Google Scholar 

  54. Yazdani H, Smith BE, Hatami K (2016) Electrical conductivity and mechanical performance of multiwalled CNT-filled polyvinyl chloride composites subjected to tensile load. J Appl Polymer Sci 133(29)

    Google Scholar 

  55. Schütz MR, Kalo H, Lunkenbein T, Breu J, Wilkie CA (2011) Intumescent-like behavior of polystyrene synthetic clay nanocomposites. Polymer 52(15):3288–3294

    Article  Google Scholar 

  56. Bartholmai M, Schartel B (2004) Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polym Adv Technol 15(7):355–364

    Article  Google Scholar 

  57. Cipiriano BH, Kashiwagi T, Raghavan SR, Yang Y, Grulke EA, Yamamoto K, Shields JR, Douglas JF (2007) Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 48(20):6086–6096

    Article  Google Scholar 

  58. Huang G, Gao J, Wang X, Liang H, Ge C (2012) How can graphene reduce the flammability of polymer nanocomposites? Mater Lett 66(1):187–189

    Article  Google Scholar 

  59. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8(5):1185–1189

    Article  ADS  Google Scholar 

  60. Jacquelot E, Espuche E, Gérard JF, Duchet J, Mazabraud P (2006) Morphology and gas barrier properties of polyethylene-based nanocomposites. J Polym Sci Part B: Polym Phys 44(2):431–440

    Article  ADS  Google Scholar 

  61. Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8(8):2458–2462

    Article  ADS  Google Scholar 

  62. Yang YH, Bolling L, Priolo MA, Grunlan JC (2013) Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv Mater 25(4):503–508

    Article  Google Scholar 

  63. Peigney A, Laurent C, Flahaut E, Rousset A (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26(6):677–683

    Article  Google Scholar 

  64. Skoulidas AI, Ackerman DM, Johnson JK, Sholl DS (2002) Rapid transport of gases in carbon nanotubes. Phys Rev Lett 89(18):185901

    Article  ADS  Google Scholar 

  65. Wu B, Li X, An D, Zhao S, Wang Y (2014) Electro-casting aligned MWCNTs/polystyrene composite membranes for enhanced gas separation performance. J Membr Sci 462:62–68

    Article  ADS  Google Scholar 

  66. Ray SS (2013) Clay-containing polymer nanocomposites: from fundamentals to real applications. Newnes

    Google Scholar 

  67. Youssef AM (2013) Polymer nanocomposites as a new trend for packaging applications. Polymer-Plastics Technol Eng 52(7):635–660

    Article  Google Scholar 

  68. Nazarenko S, Meneghetti P, Julmon P, Olson B, Qutubuddin S (2007) Gas barrier of polystyrene montmorillonite clay nanocomposites: effect of mineral layer aggregation. J Polym Sci Part B Polym Phys 45(13):1733–1753

    Article  ADS  Google Scholar 

  69. Lotti C, Isaac CS, Branciforti MC, Alves RM, Liberman S, Bretas RE (2008) Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. Eur Polymer J 44(5):1346–1357

    Article  Google Scholar 

  70. Dadbin S, Noferesti M, Frounchi M (2008) Oxygen barrier LDPE/LLDPE/organoclay nano-composite films for food packaging. In: Macromolecular symposia. Wiley Online Library

    Google Scholar 

  71. Petersen H, Jakubowicz I, Enebro J, Yarahmadi N (2016) Development of nanocomposites based on organically modified montmorillonite and plasticized PVC with improved barrier properties. J Appl Polymer Sci 133(3)

    Google Scholar 

  72. Xie W, Gao Z, Pan W-P, Hunter D, Singh A, Vaia R (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater 13(9):2979–2990

    Article  Google Scholar 

  73. Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 19(11):2736–2751

    Article  Google Scholar 

  74. Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK, Blau WJ (2004) High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Func Mater 14(8):791–798

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Council for Scientific and Industrial Research and the Department of Science and Technology, South Africa, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprakas Sinha Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mural, P.K.S., Sinha Ray, S. (2018). Processing Nanocomposites Based on Commodity Polymers. In: Sinha Ray, S. (eds) Processing of Polymer-based Nanocomposites. Springer Series in Materials Science, vol 278. Springer, Cham. https://doi.org/10.1007/978-3-319-97792-8_1

Download citation

Publish with us

Policies and ethics