Skip to main content

Endocrine System in Acute Kidney Injury

  • Chapter
  • First Online:
Endocrine Disorders in Kidney Disease

Abstract

Acute kidney injury (AKI) is frequent among hospitalized patients, especially in the intensive care unit (ICU) setting, with 2–5% of cases requiring renal replacement therapy (RRT). The average mortality risk associated with AKI remains very high (about 30% in the adult ICU population), though highly variable (16–49%) and depending on severity of illness, clinical setting, and presence of comorbidities. The implications of the syndrome stem from the key role of the kidneys in fluid and electrolyte/acid-base homeostasis, blood pressure control, and waste product excretion, but are not restricted to it. In fact, because the physiologic role of the kidneys extends to multiple endocrine functions, the occurrence of endocrine abnormalities in the course of AKI may be expected. Not only are several hormones synthesized or activated in the kidney (erythropoietin, angiotensins I and II, vitamin D, etc.), but the organ is also very important for their metabolism and excretion. In addition, the kidney is a target organ for several hormones involved in the regulation of its excretory and endocrine functions (thyroid hormones, antidiuretic hormone, etc.). The present chapter aims at focusing on some of the main renal-endocrine pathways involved in AKI with special regard to the ICU setting. To this end, glucose homeostasis derangements and insulin resistance, the hypothalamus-pituitary-thyroid axis, calcium-phosphorus metabolism and vitamin D, as well as erythropoietin will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehta RL, Cerdá J, Burdmann EA, et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet. 2015;385:2616–43.

    Article  Google Scholar 

  2. Susantitaphong P, Cruz DN, Cerda J, et al. World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol. 2013;8:1482–93.

    Article  Google Scholar 

  3. Fiaccadori E, Sabatino A, Morabito S, et al. Hyper/hypoglycemia and acute kidney injury in critically ill patients. Clin Nutr. 2016;35:317–21.

    Article  CAS  Google Scholar 

  4. Van den Berghe G, Wilmer A, Hermans G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354:449–61.

    Article  Google Scholar 

  5. Van den Berghe G. What’s new in glucose control in the ICU? Int Care Med. 2013;39:823–5.

    Article  Google Scholar 

  6. Preiser GC. Glycemic control and nutrition. J Parent Ent Nutr. 2011;35:671–2.

    Article  Google Scholar 

  7. Stamou SC, Nussbaum M, Carew JD, et al. Hypoglycemia with intensive insulin therapy after cardiac surgery: predisposing factors and association with mortality. J Thorac Cardiovasc Surgery. 2011;142:166–73.

    Article  CAS  Google Scholar 

  8. Meyer C, Dostou JM, Gerich JE. Role of the human kidney in glucose counterregulation. Diabetes. 1999;48:943–8.

    Article  CAS  Google Scholar 

  9. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228.

    Article  CAS  Google Scholar 

  10. McMahon MM, Nystrom E, Braunschweig C, et al. A.S.P.E.N. Clinical guidelines: nutrition support of adult patients with hyperglycemia. J Parenter Enter Nutr. 2013;37:23–36.

    Article  CAS  Google Scholar 

  11. KDIGO. Clinical practice guidelines for acute kidney injury. Kidney Int. 2012;(suppl. 2):1–138.

    Google Scholar 

  12. Ad-hoc working group of ERBP, Fliser D, Laville M, et al. A European renal best practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27:4263–72.

    Article  Google Scholar 

  13. Palevsky PM, Liu KD, Brophy PD, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. AJKD. 2013;61:649–72.

    Article  Google Scholar 

  14. American Diabetes Association. Standards of medical care in diabetes-2010. Diabetes Care. 2010;33:S11–61.

    Article  Google Scholar 

  15. Adler SM, Wartofsky L. The nonthyroidal illness syndrome. Endocrinol Metab Clin N Am. 2007;36:657–72.

    Article  CAS  Google Scholar 

  16. Peeters RP, Wouters PJ, Kaptein E, van Toor H, Visser TJ, Van den Berghe G. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab. 2003;88:3202–11.

    Article  CAS  Google Scholar 

  17. den Berghe V, Baxter RC, Weekers F, Wouters P, Bowers CY, Veldhuis JD. A paradoxical gender dissociation within the growth hormone/insulin-like growth factor I axis during protracted critical illness. J Clin Endocrinol Metab. 2000;85:183–92.

    PubMed  Google Scholar 

  18. Brierre S, Kumari R, Deboisblanc BP. The endocrine system during sepsis. Am J Med Sci. 2004;328:238–47.

    Article  Google Scholar 

  19. Ray DC, Macduff A, Drummond GB, et al. Endocrine measurements in survivors and non-survivors from critical illness. Intensive Care Med. 2002;28:1301–8.

    Article  Google Scholar 

  20. Van der Poll T, Romijn JA, Wiersinga WM, Sauerwein HP. Tumor necrosis factor: a putative mediator of the sick euthyroid syndrome in man. J Clin Endocrinol Metab. 1990;71:1567–72.

    Article  Google Scholar 

  21. van der Poll T, Endert E, Coyle SM, Agosti JM, Lowry SF. Neutralization of TNF does not influence endotoxininduced changes in thyroid hormone metabolism in humans. Am J Phys. 1999;276:R357–62.

    Google Scholar 

  22. Mebis L, Van den Berghe G. Thyroid axis function and dysfunction in critical illness. Best Pract Res Clin Endocrinol Metab. 2011;25:745–57.

    Article  CAS  Google Scholar 

  23. Mebis L, Debaveye Y, Ellger B, et al. Changes in the central component of the hypothalamus-pituitary-thyroid axis in a rabbit model of prolonged critical illness. Crit Care. 2009;13:R147.

    Article  Google Scholar 

  24. Peeters RP, Wouters PJ, van Toor H, Kaptein E, Visser TJ, Van den Berghe G. Serum 3,3′,5′-triiodothyronine (rT3) and 3,5,3′-triiodothyronine/rT3 are prognostic markers in critically ill patients and are associated with postmortem tissue deiodinase activities. J Clin Endocrinol Metab. 2005;90:4559–65.

    Article  CAS  Google Scholar 

  25. Maldonado LS, Murata GH, Hershman JM, Braunstein GD. Do thyroid function tests independently predict survival in the critically ill? Thyroid. 1992;2:119–23.

    Article  CAS  Google Scholar 

  26. Stouthard JM, van der Poll T, Endert E, et al. Effects of acute and chronic interleukin-6 administration on thyroid hormone metabolism in humans. J Clin Endocrinol Metab. 1994;79:1342–6.

    CAS  PubMed  Google Scholar 

  27. Langouche L, Van den Berghe G. Hypothalamic–pituitary hormones during critical illness: a dynamic neuroendocrine response. In: Fliers E, Korbonits M, Romijn JA, editors. Handbook of clinical neurology, Clinical Neuroendocrinology, vol. 124 (3rd series): Elsevier BV; 2014. p. 116–26.

    Google Scholar 

  28. Basu G, Mohapatra A. Interactions between thyroid disorders and kidney disease. Indian J Endocrinol Metab. 2012;16:204–13.

    Article  CAS  Google Scholar 

  29. Kumar J, Gordillo R, Kaskel FJ, Druschel CM, Woroniecki RP. Increased prevalence of renal and urinary tract anomalies in children with congenital hypothyroidism. J Pediatr. 2009;154:263–6.

    Article  CAS  Google Scholar 

  30. Kaptein EM. Thyroid function in renal failure. Contrib Nephrol. 1986;50:64–72.

    Article  CAS  Google Scholar 

  31. Kaptein EM, Quion-Verde H, Chooljian CJ, et al. The thyroid in end-stage renal disease. Medicine. 1988;67:187–97.

    Article  CAS  Google Scholar 

  32. den Hollander JG, Wulkan RW, Mantel MJ, Berghout A. Correlation between severity of thyroid dysfunction and renal function. Clin Endocrinol. 2005;62:423–7.

    Article  Google Scholar 

  33. Lin HH, Tang MJ. Thyroid hormone upregulates Na,K-ATPase alpha and beta mRNA in primary cultures of proximal tubule cells. Life Sci. 1997;60:375–82.

    Article  CAS  Google Scholar 

  34. Karanikas G, Schütz M, Szabo M, et al. Isotopic renal function studies in severe hypothyroidism and after thyroid hormone replacement therapy. Am J Nephrol. 2004;24:41–5.

    Article  CAS  Google Scholar 

  35. del-Rio Camacho G, Tapia Ceballos L, Picazo Angelín B, Ruiz Moreno JA, Hortas Nieto ML, Romero González J. Renal failure and acquired hypothyroidism. Pediatr Nephrol. 2003;18:290–2.

    PubMed  Google Scholar 

  36. Vargas F, Moreno JM, Rodríguez-Gómez I, et al. Vascular and renal function in experimental thyroid disorders. Eur J Endocrinol. 2006;154:197–212.

    Article  CAS  Google Scholar 

  37. Woeber KA. Thyrotoxicosis and the heart. N Engl J Med. 1992;327:94–9889. Enia G, Panuccio V, Cutrupi S et al. Subclinical hypothyroidism is linked to micro-inflammation and predicts death in continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 2007; 22: 538–544.

    Article  CAS  Google Scholar 

  38. Carrero JJ, Qureshi AR, Axelsson J, et al. Clinical and biochemical implications of low thyroid hormone levels (total and free forms) in euthyroid patients with chronic kidney disease. J Intern Med. 2007;262:690–701.

    Article  CAS  Google Scholar 

  39. Iglesias P, Olea T, Vega-Cabrera C, et al. Thyroid function tests in acute kidney injury. J Nephrol. 2013;26:164–72.

    Article  CAS  Google Scholar 

  40. Chen WL, Huang WS, Lin YF, Shieh SD. Changes in thyroid hormone metabolism in exertional heat stroke with or without acute renal failure. J Clin Endocrinol Metab. 1996;81:625–9.

    CAS  PubMed  Google Scholar 

  41. Bello G, Ceaichisciuc I, Silva S, Antonelli M. The role of thyroid dysfunction in the critically ill: a review of the literature. Minerva Anestesiol. 2010;76:919–28.

    CAS  PubMed  Google Scholar 

  42. Siegel NJ, Gaudio KM, Katz LA, et al. Beneficial effect of thyroxin on recovery from toxic acute renal failure. Kidney Int. 1984;25:906–11.

    Article  CAS  Google Scholar 

  43. Cronin RE, Brown DM, Simonsen R. Protection by thyroxine in nephrotoxic acute renal failure. Am J Phys. 1986;251:F408–16.

    CAS  Google Scholar 

  44. Sutter PM, Thulin G, Stromski M, et al. Beneficial effect of thyroxin in the treatment of ischemic acute renal failure. Pediatr Nephrol. 1988;2:1–7.

    Article  CAS  Google Scholar 

  45. Nigwekar SU, Strippoli GFM, Navaneethan SD. Thyroid hormones for acute kidney injury. Cochrane Database Syst Rev. 2013;(1):CD006740.

    Google Scholar 

  46. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42:S1–S201.

    Google Scholar 

  47. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–S130.

    Google Scholar 

  48. Uhlig K, Berns JS, Kestenbaum B, et al. KDOQI US commentary on the 2009 KDIGO clinical practice guideline for the diagnosis, evaluation, and treatment of CKD-mineral and bone disorder (CKD-MBD). Am J Kidney Dis. 2010(55):773–99.

    Google Scholar 

  49. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15:2208–18.

    Article  CAS  Google Scholar 

  50. Ravani P, Malberti F, Tripepi G, et al. Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int. 2009;75:88–95.

    Article  CAS  Google Scholar 

  51. Druml W, Schwarzenhofer M, Apsner R, Hörl WH. Fat-soluble vitamins in patients with acute renal failure. Miner Electrolyte Metab. 1998;24:220–6.

    Article  CAS  Google Scholar 

  52. Leaf DE, Waikar SS, Wolf M, Cremers S, Bhan I, Stern L. Dysregulated mineral metabolism in patients with acute kidney injury and risk of adverse outcomes. Clin Endocrinol (Oxf). 2013;79:491–8.

    Article  CAS  Google Scholar 

  53. Morabito S, Pistolesi V, Tritapepe L, Fiaccadori E. Regional citrate anticoagulation for RRTs in critically ill patients with AKI. Clin J Am Soc Nephrol. 2014;9:2173–88.

    Article  CAS  Google Scholar 

  54. Fiaccadori E, Regolisti G, Cademartiri C, et al. Efficacy and safety of a citrate-based protocol for sustained low-efficiency dialysis in AKI using standard dialysis equipment. Clin J Am Soc Nephrol. 2013;8:1670–8.

    Article  CAS  Google Scholar 

  55. Morabito S, Pistolesi V, Tritapepe L, et al. Continuous veno-venous hemofiltration using a phosphate-containing replacement fluid in the setting of regional citrate anticoagulation. Int J Artif Organs. 2013;36:845–52.

    Article  Google Scholar 

  56. Morabito S, Pistolesi V, Tritapepe L, et al. Continuous venovenous hemodiafiltration with a low citrate dose regional anticoagulation protocol and a phosphate-containing solution: effects on acid-base status and phosphate supplementation needs. BMC Nephrol. 2013;14:232.

    Article  Google Scholar 

  57. Demirjian S, Teo BW, Guzman JA, et al. Hypophosphatemia during continuous hemodialysis is associated with prolonged respiratory failure in patients with acute kidney injury. Nephrol Dial Transplant. 2011;26:3508–14.

    Article  CAS  Google Scholar 

  58. Schiffl H, Lang SM. Severe acute hypophosphatemia during renal replacement therapy adversely affects outcome of critically ill patients with acute kidney injury. Int Urol Nephrol. 2013;45:191–7.

    Article  Google Scholar 

  59. Vijayan A, Li T, Dusso A, Jain S, Coyne DW. Relationship of 1,25 dihydroxy Vitamin D Levels to Clinical Outcomes in Critically Ill Patients with Acute Kidney Injury. J Nephrol Ther. 2015;5(1):190. [Epub ahead of print].

    PubMed  PubMed Central  Google Scholar 

  60. Valdivielso JM, Cannata-Andía J, Coll B, Fernández E. A new role for vitamin D receptor activation in chronic kidney disease. Am J Physiol Renal Physiol. 2009;297:F1502–9.

    Article  CAS  Google Scholar 

  61. Levin A, Bakris GL, Molitch M, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71:31–8.

    Article  CAS  Google Scholar 

  62. Wolf M, Shah A, Gutierrez O, et al. Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int. 2007;72:1004–13.

    Article  CAS  Google Scholar 

  63. Leaf DE, Wolf M, Waikar SS, et al. FGF-23 levels in patients with AKI and risk of adverse outcomes. Clin J Am Soc Nephrol. 2012;7:1217–23.

    Article  CAS  Google Scholar 

  64. Lai L, Qian J, Yang Y, et al. Is the serum vitamin D level at the time of hospital-acquired acute kidney injury diagnosis associated with prognosis? PLoS One. 2013;8:e64964.

    Article  Google Scholar 

  65. Christov M, Waikar S, Pereira R, et al. Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney Int. 2013;84:776–85.

    Article  CAS  Google Scholar 

  66. Leaf DE, Christov M, Jüppner H, et al. Fibroblast growth factor 23 levels are elevated and associated with severe acute kidney injury and death following cardiac surgery. Kidney Int. 2016;89:939–48.

    Article  CAS  Google Scholar 

  67. Diskin CJ, Stokes TJ, Dansby LM, Radcliff L, Carter TB. Beyond anemia: the clinical impact of the physiologic effects of erythropoietin. Semin Dial. 2008;21:447–54.

    Article  Google Scholar 

  68. Tögel FE, Ahlstrom JD, Yang Y, Hu Z, Zhang P, Westenfelder C. Carbamylated erythropoietin outperforms erythropoietin in the treatment of AKI-on-CKD and other AKI models. J Am Soc Nephrol.2016; pii: ASN.2015091059. [Epub ahead of print].

    Google Scholar 

  69. Gardner DS, Welham SJ, Dunford LJ, McCulloch TA, Hodi Z, Sleeman P, O'Sullivan S, Devonald MA. Remote conditioning or erythropoietin before surgery primes kidneys to clear ischemia-reperfusion-damaged cells: a renoprotective mechanism? Am J Physiol Renal Physiol. 2014;306:F873–84.

    Article  CAS  Google Scholar 

  70. Coldewey SM, Khan AI, Kapoor A, Collino M, Rogazzo M, Brines M, Cerami A, Hall P, Sheaff M, Kieswich JE, Yaqoob MM, Patel NS, Thiemermann C. Erythropoietin attenuates acute kidney dysfunction in murine experimental sepsis by activationof the β-common receptor. Kidney Int. 2013;84:482–90.

    Article  CAS  Google Scholar 

  71. Zhao C, Lin Z, Luo Q, Xia X, Yu X, Huang F. Efficacy and safety of erythropoietin to prevent acute kidney injury in patients with critical illness or perioperative care: a systematic review and meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol. 2015;65:593–600.

    Article  CAS  Google Scholar 

  72. Nakano M, Satoh K, Fukumoto Y, et al. Important role of erythropoietin receptor to promote VEGF expression and angiogenesis in peripheral ischemia in mice. Circ Res. 2007;100:662–9.

    Article  CAS  Google Scholar 

  73. Yamashita T, Noiri E, Hamasaki Y, et al. Erythropoietin concentration in acute kidney injury is associated with insulin-like growth factor-binding protein-1. Nephrology (Carlton). 2015; https://doi.org/10.1111/nep.12656. [Epub ahead of print].

  74. de Seigneux S, Ponte B, Weiss L, Pugin J, Romand JA, Martin PY, et al. Epoetin administrated after cardiac surgery: effects on renal function and inflammation in a randomized controlled study. BMC Nephrol. 2012;13:132.

    Article  Google Scholar 

  75. Kim JH, Shim JK, Song JW, Song Y, Kim HB, Kwak YL. Effect of erythropoietin on the incidence of acute kidney injury following complex valvular heart surgery: a double blind, randomized clinical trial of efficacy and safety. Crit Care. 2013;17:R254.

    Article  Google Scholar 

  76. Oh SW, Chin HJ, Chae DW, Na KY. Erythropoietin improves long-term outcomes in patients with acute kidney injury after coronary artery bypass grafting. J Korean Med Sci. 2012;27:506–11.

    Article  CAS  Google Scholar 

  77. Song YR, Lee T, You SJ, Chin HJ, Chae DW, Lim C, et al. Prevention of acute kidney injury by erythropoietin in patients undergoing coronary artery bypass grafting: a pilot study. Am J Nephrol. 2009;30:253–60.

    Article  CAS  Google Scholar 

  78. Tasanarong A, Duangchana S, Sumransurp S, Homvises B, Satdhabudha O. Prophylaxis with erythropoietin versus placebo reduces acute kidney injury and neutrophil gelatinase-associated lipocalin in patients undergoing cardiac surgery: a randomized, double-blind controlled trial. BMC Nephrol. 2013;14:136.

    Article  CAS  Google Scholar 

  79. Yoo YC, Shim JK, Kim JC, Jo YY, Lee JH, Kwak YL. Effect of single recombinant human erythropoietin injection on transfusion requirements in preoperatively anemic patients undergoing valvular heart surgery. Anesthesiology. 2011;115:929–37.

    Article  CAS  Google Scholar 

  80. Tie HT, Luo MZ, Lin D, Zhang M, Wan JY, Wu QC. Erythropoietin administration for prevention of cardiac surgery-associated acute kidney injury: a meta-analysis of randomized controlled trials. Eur J Cardiothorac Surg. 2015;48:32–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabatino, A., Ceresini, G., Marina, M., Fiaccadori, E. (2019). Endocrine System in Acute Kidney Injury. In: Rhee, C., Kalantar-Zadeh, K., Brent, G. (eds) Endocrine Disorders in Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-97765-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97765-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97763-8

  • Online ISBN: 978-3-319-97765-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics