Skip to main content

Central Limit Theorems

  • Chapter
  • First Online:
  • 5511 Accesses

Abstract

Let P be a Markov kernel on \(\mathsf {X}\times \mathscr {X}\) that admits an invariant probability measure \(\pi \) and let be the canonical Markov chain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randal Douc .

21.A A Covariance Inequality

21.A A Covariance Inequality

Lemma 21.A.1

Let \((\varOmega ,\mathscr {A},\mathbb {P})\) be a probability space and XY two square-integrable random variables defined on \((\varOmega ,\mathscr {A},\mathbb {P})\). Define

$$\begin{aligned} \alpha = \alpha (X, Y) = 2 \sup _{(x, y) \in \mathbb {R}^2} |\mathbb {P}(X> x, Y> y) - \mathbb {P}(X> x) \mathbb {P}(Y > y)|\;. \end{aligned}$$
(21.A.1)

Then

Proof

For XY two square-integrable random variables defined on a probability space \((\varOmega ,\mathscr {A},\mathbb {P})\), one has

(21.A.2)

Note indeed that every random variable X can be written as

$$ X = X^+ - X^- = \int _0^\infty \left[ \mathbbm {1}_{\{X > x\}} - \mathbbm {1}_{\{X < -x\}} \right] \mathrm {d}x \;. $$

Writing Y similarly and applying Fubini’s theorem yields (21.A.2). For \(x\in \mathbb {R}\), set . Since the functions \(I_x\) are uniformly bounded by 1, we obtain

On the other hand, using that \({\mathbb E}\left[ |I_x(X)| \right] = \mathbb {P}(|X|>x)\), we get

Plugging these bounds into (21.A.2), we obtain

The proof is concluded by applying Hölder’s inequality. \({\Box }\)

Lemma 21.A.2

Let \((\varOmega ,\mathscr {A},\mathbb {P})\) be a probability space. Let X be a real-valued random variable and V a uniformly distributed random variable independent of X defined on \((\varOmega ,\mathscr {A},\mathbb {P})\). Define \(F_X(x^-)=\lim _{y\rightarrow x \atop y<x} F_X(y)\), \(\varDelta F_X(x) = F_X(x) -F_X(x^-)\), where \(F_X\) is the cumulative distribution function and

$$\begin{aligned} U&= 1-F_X(X^-) - V\varDelta F_X(X) \; . \end{aligned}$$

Then U is uniformly distributed and \(Q_X(U)=X\) , where \(Q_X\) is the tail quantile function.

Proof

That \(Q_X(U)=X\) is straightforward, since by definition, \(Q_X(v)=x\) for all \(v\in \left[ 1-F_X(x^-), 1-F_X(x)\right] \), whether there is a jump at x or not. To check that U is uniformly distributed over \(\left[ 0,1\right] \), note that \(\mathbb {P}(X>x)>u\) if and only if \(Q_X(u)>x\). Since V is uniformly distributed on [0, 1], this yields

$$\begin{aligned}&\mathbb {P}(U> u)\\&= \mathbb {P}(1-F_X(X)>u) + \mathbb {P}\left( X=Q_X(u), F_X(F_X^\leftarrow (u)^-) + V \varDelta F_X(F_X(F_X^\leftarrow (u)^-)) \le u \right) \\&= F_X(Q_X(u)^-) + \mathbb {P}(X=Q_X(u)) \frac{1-F_X(Q_X(u)^-)-u}{F_X(Q_X(u)^-) -F_X(Q_X(u))} = 1-u \; . \end{aligned}$$

\({\Box }\)

Lemma 21.A.3

Let \((\varOmega ,\mathscr {A},\mathbb {P})\) be a probability space and \(\mathscr {B}\) a sub-\(\sigma \)-algebra of \(\mathscr {A}\). Let X be a square-integrable random variable and . Then for all \(a\in \left[ 0,1\right] \),

$$\begin{aligned} \int _0^a Q_Y^2(u)\mathrm {d}u \le \int _0^a Q_X^2(u)\mathrm {d}u \;. \end{aligned}$$

Proof

By Lemma 21.A.2, let V be a uniformly distributed random variable, independent of \(\mathscr {B}\) and X, and define \(U = 1-F_Y(Y^-) - V \{F_Y(Y)-F_Y(Y^-)\}\). Set \(\mathscr {G}=\mathscr {B}\vee \sigma (V)\). Then \(Q_Y(U) = Y\) is \(\mathscr {B}\)-measurable and Applying Jensen’s inequality, we obtain

Noting that \(\mathbb {P}(X^2>x) > u\) if and only if \(Q_X^2(u) > x\) and applying Fubini’s theorem, we obtain

$$\begin{aligned} \int _0^\infty [\mathbb {P}(X^2>x) \wedge a] \mathrm {d}x&= \int _0^\infty \left( \int _0^a\mathbbm {1}\left\{ \mathbb {P}(X^2>x)>u\right\} \mathrm {d}u\right) \mathrm {d}x \\&= \int _0^\infty \left( \int _0^a\mathbbm {1}\left\{ Q_X^2(u)>x\right\} \mathrm {d}u\right) \mathrm {d}x \\&= \int _0^a \left( \int _0^\infty \mathbbm {1}\left\{ Q_X^2(u)>x\right\} \mathrm {d}x \right) \mathrm {d}u = \int _0^a Q_X^2(u) \mathrm {d}u \;. \end{aligned}$$

\({\Box }\)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Douc, R., Moulines, E., Priouret, P., Soulier, P. (2018). Central Limit Theorems. In: Markov Chains. Springer Series in Operations Research and Financial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-97704-1_21

Download citation

Publish with us

Policies and ethics