Skip to main content

Land, Housing, Growth and Inequality

  • Conference paper
  • First Online:
  • 481 Accesses

Abstract

This paper incorporates productive assets, residential land and residential structures in a growth model with two social classes: capitalists, who invest in productive assets and housing but do not work, and workers, who invest only in housing and decide on their labor effort. It is shown that the relative price of land grows in the long run at the same rate as the economy’s GDP, while the quantity of housing services and their price grow slower than it. Moreover, numerical examples show that (i) shifting taxation away from income and towards the property of land enhances long-term GDP growth and leads in the long-run to more equalitarian (more favorable to workers) income and wealth distributions, (ii) a marginal increase in the fraction of investment expenditures in residential structures that is tax deductible reduces income and wealth inequality, (iii) a change in preferences giving more weight in the utility function to residential services leads in the long run to a distribution of income and wealth more favorable to capitalists, (iv) changes in taxation or in preferences increasing the fraction of total investment devoted to the accumulation of residential wealth rather than to the accumulation of productive assets brings about a balanced growth path characterized by a higher wealth-income ratio. Finally, endogenous fluctuations may be generated along the equilibrium trajectory converging to the balanced growth path, in a model where housing wealth and residential land are distinguished from productive capital and only fundamentals (initial endowments, preferences and technologies) drive the economy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The hypothesis that the increase in the value of residential land that has driven up house prices displaces productive investment was explored by Stiglitz (2015b).

  2. 2.

    Phelps (1994) models economies in which a rise of the ratio between wealth per worker and wage depresses employment through its effects on labor supply. Blanchflower and Oswald (2013) document the positive link between home ownership in a geographical area and subsequent high unemployment in that area, suggesting that higher levels of home ownership reduce mobility, increase commuting times and reduce rates of business formation.

  3. 3.

    As argued by the so-called ‘new economic geography’, “firms agglomerate to benefit from ‘Marshallian externalities’ such as the spreading of knowledge among similar industries, a greater pool of labour to choose from or the ability to access indivisible goods such as conference venues or airports. Hence, when operating within proximity of each other, firms can save on transaction costs and enjoy greater productivity.” (Békés and Ottaviano 2016, p. 29).

  4. 4.

    For a recent survey of the literature on housing in macroeconomics see Piazzesi and Schneider (2016).

  5. 5.

    Notice that land’s net share of income is particularly large because land does not depreciate (all its income is net), while residential structures depreciate at a much lower rate than productive capital.

  6. 6.

    This classical dichotomy can be microfounded by assuming “that capitalists are on a corner of their labor supply decision due to their wealth, leisure being a normal good” (Judd 1985, p. 84), and that workers do not find valuable to invest in productive assets because of the information, agency and transaction costs associated with holding small amount of them.

  7. 7.

    In distinguishing between productive assets and residential assets, I follow Davis and Heathcote (2005).

  8. 8.

    Consistently with this formal set-up, one can interpret technological progress as labor augmenting.

  9. 9.

    This amounts to say that technological progress is endogenous to the economy, although it is an unintended by-products of firms’ capital investment rather than the result of purposive R&D efforts.

  10. 10.

    Given these parameter values, one has: E* = 0.33; V* = 16.881; F* = 0.1726, and \( {\mathrm{L}}_{\mathrm{w}}^{*} \) = 1.350.

  11. 11.

    For optimality, the representative worker must also satisfy the transversality conditions \( \mathop { \lim }\nolimits_{{{\mathrm{t}} \to \infty }} \rho_{\mathrm{w}}^{\mathrm{t}} {\mathrm{Q}}_{\mathrm{t}} {\mathrm{L}}_{\mathrm{wt}} \lambda_{\mathrm{wt}} = 0 \) and \( \mathop { \lim }\nolimits_{{{\mathrm{t}} \to \infty }} \rho_{\mathrm{w}}^{\mathrm{t}} {\mathrm{H}}_{\mathrm{wt}} \lambda_{\mathrm{wt}} = 0 \).

  12. 12.

    For optimality, the representative capitalist must also satisfy the transversality conditions \( \mathop { \lim }\nolimits_{{{\mathrm{t}} \to \infty }} \rho_{\mathrm{c}}^{\mathrm{t}} {\mathrm{Q}}_{\mathrm{t}} ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )\lambda_{\mathrm{ct}} = 0 \), \( \mathop { \lim }\nolimits_{{{\mathrm{t}} \to \infty }} \rho_{\mathrm{c}}^{\mathrm{t}} {\mathrm{H}}_{\mathrm{ct}} \lambda_{\mathrm{ct}} = 0 \) and \( \mathop { \lim }\nolimits_{{{\mathrm{t}} \to \infty }} \rho_{\mathrm{c}}^{\mathrm{t}} {\mathrm{K}}_{\mathrm{t}} \lambda_{\mathrm{ct}} = 0 \).

References

  • Auerbach, A. J., & Hasset, K. (2015). Capital taxation in the 21st century. NBER Working Paper Series No. 20871.

    Google Scholar 

  • Barro, R. J., & Sala-i-Martin, X. (1995). Economic growth. New York: McGraw-Hill.

    Google Scholar 

  • Békés, G., & Ottaviano Gianmarco, I. P. (2016). Micro-founded measurement of regional competitiveness in Europe. In C. Altomonte & G. Békés (Eds.), Measuring competitiveness in Europe: Resource allocation, granularity and trade. Brussels, Bruegel Blueprint Series (Vol. XVIV, pp. 26–50).

    Google Scholar 

  • Blanchflower, D. G., & Oswald, A. J. (2013). Does high home-ownership impair the labor market? NBER Working Paper No. 19079.

    Google Scholar 

  • Bonnet, O., Bono, P.-H., Chapelle, G., & Wasmer, É. (2014). Does housing capital contribute to inequality? A comment on Thomas Piketty’s capital in the 21st century. Sciences Po-Department of Economics, Discussion Paper 2014-07.

    Google Scholar 

  • Borri, N., & Reichlin, P. (2016). The housing cost disease, mimeo.

    Google Scholar 

  • Calvo, G., Kotlikoff, L. J., & Rodriguez, C. A. (1979). The incidence of a tax on pure rent: A new (?) reason to an old answer. Journal of Political Economy, 87, 869–874.

    Article  Google Scholar 

  • Cho (Stanley), S.-W., & Francis, J. L. (2011). Tax treatment of owner occupied housing and wealth inequality. Journal of Macroeconomics, 33, 42–60.

    Google Scholar 

  • Davis, M. A., & Heathcote, J. (2005). Housing and the business cycle. International Economic Review, 46, 751–788.

    Article  Google Scholar 

  • Davis, M. A., & Heathcote, J. (2007). The price and quantity of residential land in the United States. Journal of Monetary Economics, 54, 2595–2620.

    Article  Google Scholar 

  • Deaton, A., & Laroque, G. (2001). Housing, land prices, and growth. Journal of Economic Growth, 6, 87–105.

    Article  Google Scholar 

  • Eaton, J. (1988). Foreign-owned land. American Economic Review, 78, 76–88.

    Google Scholar 

  • Feldstein, M. (1977). The surprising incidence of a tax on pure rent: A new answer to an old question. Journal of Political Economy, 85, 349–360.

    Article  Google Scholar 

  • Frankel, M. (1962). The production function in allocation and growth: A synthesis. American Economic Review, 52, 995–1022.

    Google Scholar 

  • George, H. (1935). Progress and poverty: An inquiry into the cause of industrial depressions and of increase of want with increase of wealth (Fiftieth anniversary ed.). New York: Robert Schalkenbach Foundation (1st ed.: 1879).

    Google Scholar 

  • Gervais, M. (2002). Housing taxation and capital accumulation. Journal of Monetary Economics, 49, 1461–1489.

    Article  Google Scholar 

  • Glaeser, E. L., Gyourko, J., & Saks, R. E. (2005). Why have housing prices gone up? NBER Working Paper Series No. 11129.

    Google Scholar 

  • Grossmann, V., & Steger, T. (2016). Das house-kapital: A theory of wealth-to-income ratios. CESIFO Working Paper No. 5844.

    Google Scholar 

  • Hornstein, A. (2009). Problems for a fundamental theory of house prices. Economic Quarterly, 95, 1–24.

    Google Scholar 

  • Jordà, O., Schularick, M., & Taylor, A. M. (2014). The great mortgaging: Housing finance, crisis, and business cycles. NBER Working Paper Series No. 20501.

    Google Scholar 

  • Judd, K. L. (1985). Redistributive taxation in a simple perfect foresight model. Journal of Public Economics, 28, 59–83.

    Article  Google Scholar 

  • Knoll, K., Schularick, M., & Steger, T. (2014). No price like home: Global house prices, 1870–2012. CEPR Discussion Paper No. DP10166.

    Google Scholar 

  • Petrucci, A. (2006). The incidence of a tax on pure rent in a small open economy. Journal of Public Economics, 90, 921–933.

    Article  Google Scholar 

  • Phelps, E. S. (1994). Structural slumps. The modern equilibrium theory of unemployment, interest, and assets. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Piazzesi, M., & Schneider, M. (2016). Housing and macroeconomics. NBER Working Paper 22354.

    Google Scholar 

  • Piketty, T. (2013). Capital in the twenty-first century. Cambridge: Harvard University Press.

    Google Scholar 

  • Piketty, T., & Zucman, G. (2014). Capital is back: Wealth-income ratios in rich countries 1700–2010. Quarterly Journal of Economics, 129, 1255–1310.

    Article  Google Scholar 

  • Ricardo, D. (1817). On the principles of political economy and taxation (1st ed. 1817). In P. Sraffa (Ed.), The Works and Correspondence of David Ricardo (with the collaboration of M. H. Dobb) (11 vol., 1951–1973). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rognlie, M. (2014). A note on Piketty and diminishing returns to capital, mimeo.

    Google Scholar 

  • Rognlie, M. (2015). Deciphering the fall and rise in the net capital share. In Conference Draft for the Spring 2015 Brookings Panel on Economic Activity.

    Google Scholar 

  • Rowthorn, R. (2014). A note on Piketty’s capital in the twenty-first century. Cambridge Journal of Economics, 38, 1275–1284.

    Article  Google Scholar 

  • Skinner, J. (1996). The dynamic efficiency cost of not taxing housing. Journal of Public Economics, 59, 397–417.

    Article  Google Scholar 

  • Stiglitz, J. E. (2015a). New theoretical perspectives on the distribution of income and wealth among individuals: Part I. The wealth residual. NBER Working Paper Series No. 21189.

    Google Scholar 

  • Stiglitz, J. E. (2015b). New theoretical perspectives on the distribution of income and wealth among individuals: Part IV. Land and credit. NBER Working Paper Series No. 21192.

    Google Scholar 

  • Twaites, G. (2015). Why are real interest rates so low? Secular stagnation and the relative price of investment goods. Centre for Macroeconomics (CFM), Discussion Papers 1428.

    Google Scholar 

Download references

Acknowledgements

I am very grateful to Ned Phelps for the inspiring conversations during my staying as visiting scholar at the Center on Capitalism and Society at Columbia University. I also thank the Center for its warm hospitality. For valuable research assistance, I am indebted to Riccardo Degasperi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Bonatti .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 A Derivation of the Difference Equations Governing an Equilibrium Path

  1. A.1

    From firms’ profit maximization and labor market equilibrium we obtain:

$$ {\mathrm{W}}_{\mathrm{t}} = \eta \left( {{\mathrm{nE}}_{\mathrm{t}} } \right)^{\eta - 1} {\mathrm{K}}_{\mathrm{t}} ,\quad \mathrm{t} = 0,1 \ldots , $$
(A.1)
$$ {\mathrm{R}}_{\mathrm{t}} = (1 - \eta )\left( {{\mathrm{nE}}_{\mathrm{t}} } \right)^{\eta } ,\quad {\mathrm{t}} = 0,1 \ldots . $$
(A.2)
  1. A.2

    From the representative worker’s optimization problem we obtain:

$$ \frac{ ( 1- \beta - \gamma )}{{{\mathrm{C}}_{\mathrm{wt}} }} = \lambda_{\mathrm{wt}} ,\quad {\mathrm{t}} = 0,1 \ldots , $$
(A.3)
$$ \frac{\gamma }{{ 1- {\mathrm{E}}_{\mathrm{t}} }} = ( 1- \tau ) {\mathrm{W}}_{\mathrm{t}} \lambda_{\mathrm{wt}} ,\quad {\mathrm{t}} = 0,1 \ldots , $$
(A.4)
$$ \frac{\beta }{{{\mathrm{L}}_{\mathrm{wt}}^{\phi } {\mathrm{H}}_{\mathrm{wt}}^{1 - \phi } + {\mathrm{h}}_{\mathrm{wt}} }} = \left\{ {\begin{array}{*{20}l} {{\mathrm{P}}_{\mathrm{t}} \lambda_{\mathrm{wt}} \quad {\mathrm{if}}\,{\mathrm{h}}_{\mathrm{wt}} \ge 0} \hfill \\ { ( 1- \tau ) {\mathrm{P}}_{\mathrm{t}} \lambda_{\mathrm{wt}} \;{\mathrm{otherwise,}}\quad {\mathrm{t}} = 0 , 1\ldots ,} \hfill \\ \end{array} } \right. $$
(A.5)
$$ \frac{{\rho_{\mathrm{w}} \beta \phi \left( {\frac{{{\mathrm{H}}_{{{\mathrm{wt}} + 1}} }}{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }}} \right)^{1 - \phi } }}{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi } {\mathrm{H}}_{{{\mathrm{wt}} + 1}}^{1 - \phi } + {\mathrm{h}}_{{{\mathrm{wt}} + 1}} }} + \rho_{\mathrm{w}} {\mathrm{Q}}_{{{\mathrm{t}} + 1}} (1 - \zeta )\lambda_{{{\mathrm{wt}} + 1}} = {\mathrm{Q}}_{\mathrm{t}} \lambda_{\mathrm{wt}} ,\quad {\mathrm{t}} = 0,1 \ldots , $$
(A.6)
$$ \frac{{\rho_{\mathrm{w}} \beta (1 - \phi )\left( {\frac{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }}{{{\mathrm{H}}_{{{\mathrm{wt}} + 1}} }}} \right)^{\phi } }}{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi } {\mathrm{H}}_{{{\mathrm{wt}} + 1}}^{1 - \phi } + {\mathrm{h}}_{{{\mathrm{wt}} + 1}} }} + \rho_{\mathrm{w}} ( 1- \tau {\mathrm{b}}_{\mathrm{H}} )(1 - \delta_{\mathrm{H}} )\lambda_{{{\mathrm{wt}} + 1}} = ( 1- \tau {\mathrm{b}}_{\mathrm{H}} )\lambda_{\mathrm{wt}} ,\quad {\mathrm{t}} = 0,1 \ldots , $$
(A.7)

where \( \lambda_{\mathrm{wt}} \) is the (current value) multiplier of the Hamiltonian associated with the representative worker’s problem.Footnote 11

  1. A.3

    From the representative capitalist’s optimization problem and the equilibrium condition in the market for housing services we obtain:

$$ \frac{ ( 1- \alpha )}{{{\mathrm{C}}_{\mathrm{ct}} }} - \lambda_{\mathrm{ct}} = 0,\quad {\mathrm{t}} = 0,1, \ldots , $$
(A.8)
$$ \frac{\alpha }{{ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } {\mathrm{H}}_{\mathrm{ct}}^{1 - \phi } - {\mathrm{nh}}_{\mathrm{wt}} }} = \left\{ {\begin{array}{*{20}l} { ( 1- \tau ) {\mathrm{P}}_{\mathrm{t}} \lambda_{\mathrm{ct}} \quad {\mathrm{if}}\;{\mathrm{h}}_{\mathrm{wt}} \ge 0} \hfill \\ {{\mathrm{P}}_{\mathrm{t}} \lambda_{\mathrm{ct}} \;{\mathrm{otherwise}},\quad {\mathrm{t}} = 0,1 \ldots ,} \hfill \\ \end{array} } \right. $$
(A.9)
$$ \frac{{\rho_{\mathrm{c}} \alpha \phi \left( {\frac{{{\mathrm{H}}_{{{\mathrm{ct}} + 1}} }}{{{\mathrm{L}} - {\mathrm{nL}}_{{{\mathrm{wt}} + 1}} }}} \right)^{1 - \phi } }}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{{{\mathrm{wt}} + 1}} )^{\phi } {\mathrm{H}}_{{{\mathrm{ct}} + 1}}^{1 - \phi } - {\mathrm{nh}}_{{{\mathrm{wt}} + 1}} }} + \rho_{\mathrm{c}} {\mathrm{Q}}_{{{\mathrm{t}} + 1}} (1 - \zeta )\lambda_{{{\mathrm{ct}} + 1}} = {\mathrm{Q}}_{\mathrm{t}} \lambda_{\mathrm{ct}} ,\quad {\mathrm{t}} = 0,1 \ldots , $$
(A.10)
$$\begin{aligned}& \frac{{\rho_{\mathrm{c}} \alpha (1 - \phi )\left( {\frac{{{\mathrm{L}} - {\mathrm{nL}}_{{{\mathrm{wt}} + 1}} }}{{{\mathrm{H}}_{{{\mathrm{ct}} + 1}} }}} \right)^{\phi } }}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{{{\mathrm{wt}} + 1}} )^{\phi } {\mathrm{H}}_{{{\mathrm{ct}} + 1}}^{1 - \phi } - {\mathrm{nh}}_{{{\mathrm{wt}} + 1}} }} + \rho_{\mathrm{c}} ( 1- \tau {\mathrm{b}}_{\mathrm{H}} )(1 - \delta_{\mathrm{H}} )\lambda_{{{\mathrm{ct}} + 1}}\\ & \quad= ( 1- \tau {\mathrm{b}}_{\mathrm{H}} )\lambda_{\mathrm{ct}} ,\quad {\mathrm{t}} = 0,1 \ldots , \end{aligned} $$
(A.11)
$$ \rho_{\mathrm{c}} [ {\mathrm{R}}_{{{\mathrm{t}} + 1}} ( 1- \tau ) + ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \delta_{\mathrm{K}} )]\lambda_{{{\mathrm{ct}} + 1}} = ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )\lambda_{\mathrm{ct}} ,\quad {\mathrm{t}} = 0,1 \ldots , $$
(A.12)

where \( \lambda_{\mathrm{ct}} \) is the (current value) multiplier of the Hamiltonian associated with the representative capitalist’s problem.Footnote 12

  1. A.4

    Let suppose from now on that \( {\mathrm{h}}_{\mathrm{wt}} \ge 0 \). Hence, from (A.3) and (A.5) we get

$$ {\mathrm{C}}_{\mathrm{wt}} = \frac{{ ( {\mathrm{L}}_{\mathrm{wt}}^{\phi } {\mathrm{H}}_{\mathrm{wt}}^{1 - \phi } + {\mathrm{h}}_{\mathrm{wt}} ) ( 1- \beta - \gamma ) {\mathrm{P}}_{\mathrm{t}} }}{\beta },\quad {\mathrm{t}} = 0,1 \ldots , $$
(A.13)

while from (A.8) and (A.9) we get

$$ {\mathrm{P}}_{\mathrm{t}} = \frac{{\alpha {\mathrm{C}}_{\mathrm{ct}} }}{{ [ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } {\mathrm{H}}_{\mathrm{ct}}^{1 - \phi } - {\mathrm{nh}}_{\mathrm{wt}} ] ( 1- \alpha ) ( 1- \tau )}},\quad {\mathrm{t}} = 0,1 \ldots . $$
(A.14)

Finally, by substituting (A.14) for \( {\mathrm{P}}_{\mathrm{t}} \) in (A.13), we get

$$ {\mathrm{C}}_{\mathrm{wt}} = \frac{{ ( {\mathrm{L}}_{\mathrm{wt}}^{\phi } {\mathrm{H}}_{\mathrm{wt}}^{1 - \phi } + {\mathrm{h}}_{\mathrm{wt}} ) ( 1- \beta - \gamma )\alpha {\mathrm{C}}_{\mathrm{ct}} }}{{\beta [ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } {\mathrm{H}}_{\mathrm{ct}}^{1 - \phi } - {\mathrm{nh}}_{\mathrm{wt}} ] ( 1- \alpha ) ( 1- \tau )}},\quad {\mathrm{t}} = 0,1 \ldots . $$
(A.15)
  1. A.5

    By using (A.2), (A.8) and (A.12), one can obtain

$$ \frac{{{\mathrm{C}}_{{{\mathrm{ct}} + 1}} }}{{{\mathrm{C}}_{\mathrm{ct}} }} = g ( {\mathrm{E}}_{{{\mathrm{t}} + 1}} ),\quad {\mathrm{t}} = 0,1 \ldots , $$
(A.16)

where \( g\left( {{\mathrm{E}}_{{{\mathrm{t}} + 1}} } \right) = \rho_{\mathrm{c}} \left[ {\frac{{(1 - \eta )(1 - \tau )\left( {{\mathrm{nE}}_{{{\mathrm{t}} + 1}} } \right)^{\eta } }}{{ ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )}} + 1 - \delta_{\mathrm{K}} } \right] \)

  1. A.6

    By using (A.8), (A.11) and (A.16), one can obtain

$$ {\mathrm{C}}_{\mathrm{ct}} = {\mathrm{H}}_{\mathrm{ct}} d ( {\mathrm{F}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} , {\mathrm{E}}_{\mathrm{t}} ),\;{\mathrm{F}}_{\mathrm{t}} \equiv \frac{{{\mathrm{h}}_{\mathrm{wt}} }}{{{\mathrm{H}}_{\mathrm{ct}}^{1 - \phi } }},\quad {\mathrm{t}} = 0,1 \ldots , $$
(A.17)

where \( d ( {\mathrm{F}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} , {\mathrm{E}}_{\mathrm{t}} ) = \frac{{ [ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } - {\mathrm{nF}}_{\mathrm{t}} ] ( 1- \tau {\mathrm{b}}_{\mathrm{H}} ) ( 1- \alpha ) [ ( 1- \eta ) ( 1- \tau ) ( {\mathrm{nE}}_{\mathrm{t}} )^{\eta } - ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ) (\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}{{\alpha ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ) ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } ( 1- \phi )}} \)

  1. A.7

    By using (A.1), (A.3), (A.4) and (A.15), one can obtain

$$ \frac{{{\mathrm{C}}_{\mathrm{ct}} }}{{{\mathrm{K}}_{\mathrm{t}} }} = m ( {\mathrm{V}}_{\mathrm{t}} , {\mathrm{F}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} , {\mathrm{E}}_{\mathrm{t}} ),{\mathrm{ V}}_{\mathrm{t}} \equiv \frac{{{\mathrm{H}}_{\mathrm{ct}} }}{{{\mathrm{H}}_{\mathrm{wt}} }},\quad {\mathrm{t}} = 0,1 \ldots , $$
(A.18)

where \( m ( {\mathrm{V}}_{\mathrm{t}} ,{\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} ) = \frac{{[({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } - {\mathrm{nF}}_{\mathrm{t}} ]\beta \eta (1 - \alpha )(1 - \tau )^{ 2} ( 1- {\mathrm{E}}_{\mathrm{t}} )}}{{\alpha \gamma ( {\mathrm{nE}}_{\mathrm{t}} )^{1 - \eta } ( {\mathrm{L}}_{\mathrm{wt}}^{\phi } {\mathrm{V}}_{\mathrm{t}}^{{\phi { - 1}}} + {\mathrm{F}}_{\mathrm{t}} )}}. \)

Notice that it derives from (A.17) and (A.18) that

$$ \begin{aligned} \frac{{{\mathrm{H}}_{\mathrm{ct}} }}{{{\mathrm{K}}_{\mathrm{t}} }} & = \frac{{m ( {\mathrm{V}}_{\mathrm{t}} , {\mathrm{F}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} , {\mathrm{E}}_{\mathrm{t}} )}}{{d ( {\mathrm{F}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} , {\mathrm{E}}_{\mathrm{t}} )}} \\ & = \frac{{ ( 1- {\mathrm{E}}_{\mathrm{t}} ) ( 1- \tau )^{ 2} \beta \eta ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ) ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } (1 - \phi ) ( {\mathrm{L}}_{\mathrm{wt}}^{\phi } {\mathrm{V}}_{\mathrm{t}}^{\phi - 1} + {\mathrm{F}}_{\mathrm{t}} )^{ - 1} }}{{\gamma [ ( 1- \eta ) ( 1- \tau ) ( {\mathrm{nE}}_{\mathrm{t}} )^{\eta } - ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ) (\delta_{\mathrm{K}} - \delta_{\mathrm{H}} ) ] ( 1- \tau {\mathrm{b}}_{\mathrm{H}} ) ( {\mathrm{nE}}_{\mathrm{t}} )^{ 1- \eta } }},\\ & \quad\quad {\mathrm{t}} = 0,1 \ldots .\end{aligned} $$
(A.19)
  1. A.8

    By using (A.3), (A.6) and (A.7), one can obtain

$$ \begin{aligned}& \frac{{\beta \phi \left( {\frac{{{\mathrm{H}}_{{{\mathrm{wt}} + 1}} }}{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }}} \right)^{1 - \phi } }}{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi } {\mathrm{H}}_{{{\mathrm{wt}} + 1}}^{1 - \phi } + {\mathrm{h}}_{{{\mathrm{wt}} + 1}} }} + \frac{{{\mathrm{Q}}_{{{\mathrm{t}} + 1}} ( 1- \zeta ) ( 1- \beta - \gamma )}}{{{\mathrm{C}}_{{{\mathrm{wt}} + 1}} }} \\ &\quad = {\mathrm{Q}}_{\mathrm{t}} \left[ {\frac{{\beta (1 - \phi )\left( {\frac{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }}{{{\mathrm{H}}_{{{\mathrm{wt}} + 1}} }}} \right)^{\phi } }}{{ ( 1- \tau {\mathrm{b}}_{\mathrm{H}} ) [ {\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi } {\mathrm{H}}_{{{\mathrm{wt}} + 1}}^{1 - \phi } + {\mathrm{h}}_{{{\mathrm{wt}} + 1}} ]}} + \frac{{ ( 1- \beta - \gamma ) ( 1- \delta_{\mathrm{H}} )}}{{{\mathrm{C}}_{{{\mathrm{wt}} + 1}} }}} \right], \\ & \quad {\mathrm{t}} = 0,1 \ldots , \end{aligned} $$
(A.20)
  1. A.9

    By using (A.8), (A.10) and (A.16), one can obtain

$$ \begin{aligned} {\mathrm{Q}}_{\mathrm{t}} & = \frac{{\rho_{\mathrm{c}} \alpha \phi \left( {\frac{{{\mathrm{H}}_{{{\mathrm{ct}} + 1}} }}{{{\mathrm{L}} - {\mathrm{nL}}_{{{\mathrm{wt}} + 1}} }}} \right)^{1 - \phi } {\mathrm{C}}_{\mathrm{ct}} }}{{ [ ( {\mathrm{L}} - {\mathrm{nL}}_{{{\mathrm{wt}} + 1}} )^{\phi } {\mathrm{H}}_{{{\mathrm{ct}} + 1}}^{1 - \phi } - {\mathrm{nh}}_{{{\mathrm{wt}} + 1}} ](1 - \alpha )}} \\ & \quad + \frac{{ ( 1- \zeta ) ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ){\mathrm{Q}}_{{{\mathrm{t}} + 1}} }}{{(1 - \eta )(1 - \tau )\left( {{\mathrm{nE}}_{{{\mathrm{t}} + 1}} } \right)^{\eta } + ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \delta_{\mathrm{K}} )}},\;{\mathrm{t}} = 0 , 1\ldots \, . \\ \end{aligned} $$
(A.21)
  1. A.10

    By using (A.16) and (A.21) for substituting Qt, (A.20) can be rewritten as

$$ \begin{aligned} & \frac{{ ( 1- \zeta ) {\mathrm{Q}}_{{{\mathrm{t}} + 1}} ( 1- \beta - \gamma )}}{{{\mathrm{C}}_{{{\mathrm{wt}} + 1}} }}\left[ {1 - \frac{{ ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ) ( 1- \delta_{\mathrm{H}} )}}{{(1 - \eta )(1 - \tau )\left( {{\mathrm{nE}}_{{{\mathrm{t}} + 1}} } \right)^{\eta } + ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \delta_{\mathrm{K}} )}}} \right] \\ & \quad - \frac{{ ( 1- \zeta ) {\mathrm{Q}}_{{{\mathrm{t}} + 1}} \beta (1 - \phi ) ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ){\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi } {\mathrm{V}}_{{{\mathrm{t}} + 1}} [ {\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi } + {\mathrm{V}}_{{{\mathrm{t}} + 1}}^{1 - \phi } {\mathrm{F}}_{{{\mathrm{t}} + 1}} ]^{ - 1} }}{{ ( 1- \tau {\mathrm{b}}_{\mathrm{H}} )[(1 - \eta )(1 - \tau )\left( {{\mathrm{nE}}_{{{\mathrm{t}} + 1}} } \right)^{\eta } + ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \delta_{\mathrm{K}} )]{\mathrm{H}}_{{{\mathrm{ct}} + 1}} }}\\ & \quad = - \frac{{\beta \phi {\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi - 1} }}{{ ( {\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi } + {\mathrm{V}}_{{{\mathrm{t}} + 1}}^{1 - \phi } {\mathrm{F}}_{{{\mathrm{t}} + 1}} )}} \\ & \quad \quad + \frac{{\alpha \phi [(1 - \eta )(1 - \tau )\left( {{\mathrm{nE}}_{{{\mathrm{t}} + 1}} } \right)^{\eta } + ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \delta_{\mathrm{K}} )]^{ - 1} ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ){\mathrm{C}}_{{{\mathrm{ct}} + 1}} }}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{{{\mathrm{wt}} + 1}} )^{1 - \phi } [ ( {\mathrm{L}} - {\mathrm{nL}}_{{{\mathrm{wt}} + 1}} )^{\phi } - {\mathrm{nF}}_{{{\mathrm{t}} + 1}} ](1 - \alpha )}} \\ & \quad \quad \times \left[ {\frac{{\beta (1 - \phi ){\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi } {\mathrm{V}}_{{{\mathrm{t}} + 1}} }}{{ ( 1- \tau {\mathrm{b}}_{\mathrm{H}} ) ( {\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi } + {\mathrm{V}}_{{{\mathrm{t}} + 1}}^{1 - \phi } {\mathrm{F}}_{{{\mathrm{t}} + 1}} ) {\mathrm{H}}_{{{\mathrm{ct}} + 1}} }} + \frac{{ ( 1- \beta - \gamma ) ( 1- \delta_{\mathrm{H}} )}}{{{\mathrm{C}}_{{{\mathrm{wt}} + 1}} }}} \right],\quad {\mathrm{t}} = 0,1 \ldots . \\ \end{aligned} $$
(A.22)
  1. A.11

    By using (A.15), (A.17) and (A.22), one can obtain

$$ {\mathrm{Q}}_{\mathrm{t}} = \frac{{{\mathrm{H}}_{\mathrm{ct}} q ( {\mathrm{V}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} , {\mathrm{E}}_{\mathrm{t}} )}}{ ( 1- \zeta )},\quad {\mathrm{t}} = 1,2 \ldots , $$
(A.23)

where

$$ \begin{aligned} & q ( {\mathrm{V}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} , {\mathrm{E}}_{\mathrm{t}} )\\ & \quad = \frac{{\phi ( 1- \tau {\mathrm{b}}_{\mathrm{H}} ){\mathrm{V}}_{\mathrm{t}} {\mathrm{L}}_{\mathrm{wt}}^{\phi } [(1 - \eta )(1 - \tau )\left( {{\mathrm{nE}}_{\mathrm{t}} } \right)^{\eta } - ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ) (\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}{{(1 - \phi ) ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ) ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )[ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } {\mathrm{V}}_{\mathrm{t}}^{1 - \phi } (1 - \tau ) - {\mathrm{V}}_{\mathrm{t}} {\mathrm{L}}_{\mathrm{wt}}^{\phi } ]}} \\ & \quad \quad + \frac{{\phi ( 1- \tau {\mathrm{b}}_{\mathrm{H}} )\left\{ {\frac{{{\mathrm{V}}_{\mathrm{t}}^{1 - \phi } (1 - \tau ) ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ) ( 1- \delta_{\mathrm{H}} )}}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{1 - \phi } }} - \frac{{[(1 - \eta )(1 - \tau )\left( {{\mathrm{nE}}_{\mathrm{t}} } \right)^{\eta } + ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \delta_{\mathrm{K}} )]}}{{{\mathrm{L}}_{\mathrm{wt}}^{1 - \phi } }}} \right\}}}{{(1 - \phi ) ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )[ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } {\mathrm{V}}_{\mathrm{t}}^{1 - \phi } (1 - \tau ) - {\mathrm{V}}_{\mathrm{t}} {\mathrm{L}}_{\mathrm{wt}}^{\phi } ]}}. \\ \end{aligned} $$
  1. A.12

    By dividing the period budget constraint of the representative worker by Cct, one can obtain:

$$ {{\Psi} } ( {\mathrm{E}}_{{{\mathrm{t}} + 1}} , {\mathrm{V}}_{{{\mathrm{t}} + 1}} , {\mathrm{F}}_{{{\mathrm{t}} + 1}} , {\mathrm{L}}_{{{\mathrm{wt}} + 1}} , {\mathrm{E}}_{\mathrm{t}} , {\mathrm{V}}_{\mathrm{t}} , {\mathrm{F}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} )= 0,\quad {\mathrm{t}} = 1,2 \ldots , $$
(A.24)

where

$$ \begin{aligned} {{\Psi} } (. )& = \frac{\xi \tau }{\mathrm{n}} \left \{ \frac{{[\left( {{\mathrm{nE}}_{\mathrm{t}} } \right)^{\eta } + {\mathrm{b}}_{\mathrm{K}} (1 - \delta_{\mathrm{k}} )]}}{{m ( {\mathrm{V}}_{\mathrm{t}} ,{\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} )}} - \frac{{{\mathrm{b}}_{\mathrm{K}} g({\mathrm{E}}_{{{\mathrm{t}} + 1}} )}}{{m ( {\mathrm{V}}_{{{\mathrm{t}} + 1}} ,{\mathrm{F}}_{{{\mathrm{t}} + 1}} ,{\mathrm{L}}_{{{\mathrm{wt}} + 1}} ,{\mathrm{E}}_{{{\mathrm{t}} + 1}} )}} \right. \\ & \quad + \frac{{\alpha {\mathrm{nF}}_{\mathrm{t}} }} {{(1 - \alpha )(1 - \tau )[ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } - {\mathrm{nF}}_{\mathrm{t}} ]}} \\& \quad + \left. {\frac{{{\mathrm{b}}_{\mathrm{H}} (1 - \delta_{\mathrm{H}} )}}{{d ( {\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} )}}\left( { 1+ \frac{\mathrm{n}}{{{\mathrm{V}}_{\mathrm{t}} }}} \right) - \frac{{{\mathrm{b}}_{\mathrm{H}} g({\mathrm{E}}_{{{\mathrm{t}} + 1}} )}}{{d ( {\mathrm{F}}_{{{\mathrm{t}} + 1}} ,{\mathrm{L}}_{{{\mathrm{wt}} + 1}} ,{\mathrm{E}}_{{{\mathrm{t}} + 1}} )}}\left( { 1+ \frac{\mathrm{n}}{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }}} \right)} \right\} \\& \quad + \frac{{\xi \zeta q ( {\mathrm{V}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} ) {\mathrm{L}}}}{{{\mathrm{n}}(1 - \zeta )d ( {\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} )}} + \frac{{\left( {{\mathrm{nE}}_{\mathrm{t}} } \right)^{\eta } \eta (1 - \tau )}}{{{\mathrm{n}}m ( {\mathrm{V}}_{\mathrm{t}} ,{\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} )}} \\& \quad + \frac{{ ( 1- \tau {\mathrm{b}}_{\mathrm{H}} )(1 - \delta_{\mathrm{H}} )}}{{{\mathrm{V}}_{\mathrm{t}} d ( {\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} )}} - \frac{{ ( 1- \tau {\mathrm{b}}_{\mathrm{H}} )g({\mathrm{E}}_{{{\mathrm{t}} + 1}} )}}{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} d ( {\mathrm{F}}_{{{\mathrm{t}} + 1}} ,{\mathrm{L}}_{{{\mathrm{wt}} + 1}} ,{\mathrm{E}}_{{{\mathrm{t}} + 1}} )}} \\& \quad - \frac{{\alpha [(1 - \beta - \gamma ){\mathrm{L}}_{\mathrm{wt}}^{\phi } {\mathrm{V}}_{\mathrm{t}}^{\phi - 1} + (1 - \gamma ){\mathrm{F}}_{\mathrm{t}} ]}}{{(1 - \alpha )(1 - \tau )\beta [ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } - {\mathrm{nF}}_{\mathrm{t}} ]}}\\& \quad - \frac{{q ( {\mathrm{V}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} ) [ {\mathrm{L}}_{{{\mathrm{wt}} + 1}} - {\mathrm{L}}_{\mathrm{wt}} ( 1- \zeta ) ]}}{{(1 - \zeta )d ( {\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} )}}. \\\end{aligned}$$
  1. A.13

    By dividing the period budget constraint of the representative capitalist by Cct, one can obtain:

$$ {{\Omega} } ( {\mathrm{E}}_{{{\mathrm{t}} + 1}} , {\mathrm{V}}_{{{\mathrm{t}} + 1}} , {\mathrm{F}}_{{{\mathrm{t}} + 1}} , {\mathrm{L}}_{{{\mathrm{wt}} + 1}} , {\mathrm{E}}_{\mathrm{t}} , {\mathrm{V}}_{\mathrm{t}} , {\mathrm{F}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} )= 0,\quad {\mathrm{t}} = 1,2 \ldots , $$
(A.25)

where

$$ \begin{aligned} {{\Omega} } (. )& = ( 1- \xi )\tau \left\{ \frac{{[\left( {{\mathrm{nE}}_{\mathrm{t}} } \right)^{\eta } + {\mathrm{b}}_{\mathrm{K}} (1 - \delta_{\mathrm{k}} )]}}{{m ( {\mathrm{V}}_{\mathrm{t}} ,{\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} )}} - \frac{{{\mathrm{b}}_{\mathrm{K}} g({\mathrm{E}}_{{{\mathrm{t}} + 1}} )}}{{m ( {\mathrm{V}}_{{{\mathrm{t}} + 1}} ,{\mathrm{F}}_{{{\mathrm{t}} + 1}} ,{\mathrm{L}}_{{{\mathrm{wt}} + 1}} ,{\mathrm{E}}_{{{\mathrm{t}} + 1}} )}} \right. \\ & \quad + \frac{{\alpha {\mathrm{nF}}_{\mathrm{t}} }}{{(1 - \alpha )(1 - \tau )[ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } - {\mathrm{nF}}_{\mathrm{t}} ]}} \\ & \quad + \left. {\frac{{{\mathrm{b}}_{\mathrm{H}} (1 - \delta_{\mathrm{H}} )}}{{d ( {\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} )}}\left( { 1+ \frac{\mathrm{n}}{{{\mathrm{V}}_{\mathrm{t}} }}} \right) - \frac{{{\mathrm{b}}_{\mathrm{H}} g({\mathrm{E}}_{{{\mathrm{t}} + 1}} )}}{{d ( {\mathrm{F}}_{{{\mathrm{t}} + 1}} ,{\mathrm{L}}_{{{\mathrm{wt}} + 1}} ,{\mathrm{E}}_{{{\mathrm{t}} + 1}} )}}\left( { 1+ \frac{\mathrm{n}}{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }}} \right)} \right\} \\ & \quad - \frac{{\xi \zeta q ( {\mathrm{V}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} ) {\mathrm{L}}}}{{(1 - \zeta )d ( {\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} )}} + \frac{{\left( {{\mathrm{nE}}_{\mathrm{t}} } \right)^{\eta } ( 1- \eta )(1 - \tau )}}{{m ( {\mathrm{V}}_{\mathrm{t}} ,{\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} , {\mathrm{E}}_{\mathrm{t}} )}} \\ & \quad + \frac{{ ( 1- \tau {\mathrm{b}}_{\mathrm{H}} )(1 - \delta_{\mathrm{H}} )}}{{d ( {\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} )}} - \frac{{ ( 1- \tau {\mathrm{b}}_{\mathrm{H}} )g({\mathrm{E}}_{{{\mathrm{t}} + 1}} )}}{{d ( {\mathrm{F}}_{{{\mathrm{t}} + 1}} ,{\mathrm{L}}_{{{\mathrm{wt}} + 1}} ,{\mathrm{E}}_{{{\mathrm{t}} + 1}} )}} + \frac{{\alpha {\mathrm{nF}}_{\mathrm{t}} }}{{(1 - \alpha )[ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } - {\mathrm{nF}}_{\mathrm{t}} ]}} \\ & \quad + \frac{{q ( {\mathrm{V}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} , {\mathrm{E}}_{\mathrm{t}} ) {\mathrm{n[L}}_{{{\mathrm{wt}} + 1}} - {\mathrm{L}}_{\mathrm{wt}} ( 1- \zeta ) ]}}{{(1 - \zeta )d ( {\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} )}} \\ & \quad - 1- \frac{{ ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )g({\mathrm{E}}_{{{\mathrm{t}} + 1}} )}}{{m ( {\mathrm{V}}_{{{\mathrm{t}} + 1}} ,{\mathrm{F}}_{{{\mathrm{t}} + 1}} ,{\mathrm{L}}_{{{\mathrm{wt}} + 1}} ,{\mathrm{E}}_{{{\mathrm{t}} + 1}} )}} + \frac{{ ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \delta_{\mathrm{K}} )}}{{m ( {\mathrm{V}}_{\mathrm{t}} ,{\mathrm{F}}_{\mathrm{t}} ,{\mathrm{L}}_{\mathrm{wt}} ,{\mathrm{E}}_{\mathrm{t}} )}}. \\ \end{aligned} $$
  1. A.14

    From (A.6), one can obtain:

$$ \Gamma ( {\mathrm{E}}_{{{\mathrm{t}} + 1}} , {\mathrm{V}}_{{{\mathrm{t}} + 1}} , {\mathrm{F}}_{{{\mathrm{t}} + 1}} , {\mathrm{L}}_{{{\mathrm{wt}} + 1}} , {\mathrm{E}}_{\mathrm{t}} , {\mathrm{V}}_{\mathrm{t}} , {\mathrm{F}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} )= 0,\quad {\mathrm{t}} = 1,2 \ldots , $$
(A.26)

where

$$ \begin{aligned}\Gamma (.) & = \frac{{\rho_{\mathrm{w}} \beta \phi {\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi - 1} {\mathrm{V}}_{{{\mathrm{t}} + 1}}^{\phi - 1} }}{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi } {\mathrm{V}}_{{{\mathrm{t}} + 1}}^{\phi - 1} + {\mathrm{F}}_{{{\mathrm{t}} + 1}} }} \\ & + \frac{{\rho_{\mathrm{w}} ( 1- \alpha )\beta (1 - \tau )q ( {\mathrm{V}}_{{{\mathrm{t}} + 1}} , {\mathrm{L}}_{{{\mathrm{wt}} + 1}} , {\mathrm{E}}_{{{\mathrm{t}} + 1}} )[ ( {\mathrm{L}} - {\mathrm{nL}}_{{{\mathrm{wt}} + 1}} )^{\phi } - {\mathrm{nF}}_{{{\mathrm{t}} + 1}} ]}}{{\alpha ({\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi } {\mathrm{V}}_{{{\mathrm{t}} + 1}}^{\phi - 1} + {\mathrm{F}}_{{{\mathrm{t}} + 1}} )d ( {\mathrm{F}}_{{{\mathrm{t}} + 1}} , {\mathrm{L}}_{{{\mathrm{wt}} + 1}} , {\mathrm{E}}_{{{\mathrm{t}} + 1}} )}} \\ & \quad - \frac{{( 1- \alpha )\beta (1 - \tau )q ( {\mathrm{V}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} , {\mathrm{E}}_{\mathrm{t}} )[ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } - {\mathrm{nF}}_{\mathrm{t}} ]}}{{\alpha ({\mathrm{L}}_{\mathrm{wt}}^{\phi } {\mathrm{V}}_{\mathrm{t}}^{\phi - 1} + {\mathrm{F}}_{\mathrm{t}} )d ( {\mathrm{F}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} , {\mathrm{E}}_{\mathrm{t}} )(1 - \zeta )}}. \\ \end{aligned} $$
  1. A.15

    From (A.7), one can obtain:

$$ \Lambda ( {\mathrm{E}}_{{{\mathrm{t}} + 1}} , {\mathrm{V}}_{{{\mathrm{t}} + 1}} , {\mathrm{F}}_{{{\mathrm{t}} + 1}} , {\mathrm{L}}_{{{\mathrm{wt}} + 1}} , {\mathrm{V}}_{\mathrm{t}} , {\mathrm{F}}_{\mathrm{t}} , {\mathrm{L}}_{\mathrm{wt}} )= 0,\quad {\mathrm{t}} = 1,2 \ldots , $$
(A.27)

where

$$ \begin{aligned}\Lambda (.) & = \frac{{\rho_{\mathrm{w}} \alpha (1 - \phi ){\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi } {\mathrm{V}}_{{{\mathrm{t}} + 1}}^{\phi } d ( {\mathrm{F}}_{{{\mathrm{t}} + 1}} , {\mathrm{L}}_{{{\mathrm{wt}} + 1}} , {\mathrm{E}}_{{{\mathrm{t}} + 1}} )}}{{( 1- \alpha )(1 - \tau )[ ( {\mathrm{L}} - {\mathrm{nL}}_{{{\mathrm{wt}} + 1}} )^{\phi } - {\mathrm{nF}}_{{{\mathrm{t}} + 1}} ]}} + \rho_{\mathrm{w}} ( 1- \tau {\mathrm{b}}_{\mathrm{H}} )(1 - \delta_{\mathrm{H}} ) \\ & \quad - \frac{{(1 - \tau {\mathrm{b}}_{\mathrm{H}} )({\mathrm{L}}_{{{\mathrm{wt}} + 1}}^{\phi } {\mathrm{V}}_{{{\mathrm{t}} + 1}}^{\phi - 1} + {\mathrm{F}}_{{{\mathrm{t}} + 1}} )[ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{\phi } - {\mathrm{nF}}_{\mathrm{t}} ]g({\mathrm{E}}_{{{\mathrm{t}} + 1}} )}}{{({\mathrm{L}}_{\mathrm{wt}}^{\phi } {\mathrm{V}}_{\mathrm{t}}^{\phi - 1} + {\mathrm{F}}_{\mathrm{t}} )[ ( {\mathrm{L}} - {\mathrm{nL}}_{{{\mathrm{wt}} + 1}} )^{\phi } - {\mathrm{nF}}_{{{\mathrm{t}} + 1}} ]}}. \\ \end{aligned} $$

Notice that (A.24)–(A.27) is a system of difference equations in \( {\mathrm{E}}_{\mathrm{t}} , {\mathrm{V}}_{\mathrm{t}} , {\mathrm{F}}_{\mathrm{t}} \) and \( {\mathrm{L}}_{\mathrm{wt}} \) that governs the equilibrium path of the economy.

1.2 B Balanced Growth Path (BGP)

  1. B.1

    By setting \( {\mathrm{E}}_{{{\mathrm{t}} + 1}} = {\mathrm{E}}_{\mathrm{t}} = {\mathrm{E}} \), \( {\mathrm{V}}_{{{\mathrm{t}} + 1}} = {\mathrm{V}}_{\mathrm{t}} = {\mathrm{V}} \), \( {\mathrm{F}}_{{{\mathrm{t}} + 1}} = {\mathrm{F}}_{\mathrm{t}} = {\mathrm{F}} \) and \( {\mathrm{L}}_{{{\mathrm{wt}} + 1}} = {\mathrm{L}}_{\mathrm{wt}} = {\mathrm{L}}_{\mathrm{w}} \), Eq. (A.27) becomes

$$ \frac{{\rho_{\mathrm{w}} {\mathrm{L}}_{\mathrm{w}}^{\phi } {\mathrm{V}}^{\phi } [ ( 1- \eta ) ( 1- \tau ) ( {\mathrm{nE)}}^{\eta } - ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ) (\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}{{ ( 1- \tau )(1 - \tau {\mathrm{b}}_{\mathrm{K}} ) ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{\phi } }} + \rho_{\mathrm{w}} (1 - \delta_{\mathrm{H}} ) - g({\mathrm{E)}} = 0, $$

from which one can obtain

$$ {\mathrm{V}} = [\chi ( {\mathrm{E)]}}^{{\frac{ 1}{\phi }}} \frac{{ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )}}{{{\mathrm{L}}_{\mathrm{w}} }}, $$
(B.1)

where \( \chi ( {\mathrm{E)}} = \frac{{ [g({\mathrm{E)}} - \rho_{\mathrm{w}} (1 - \delta_{\mathrm{H}} )](1 - \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \tau )}}{{\rho_{\mathrm{w}} [ ( 1- \eta ) ( 1- \tau ) ( {\mathrm{nE)}}^{\eta } - ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ) (\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}. \)

  1. B.2

    By setting \( {\mathrm{E}}_{{{\mathrm{t}} + 1}} = {\mathrm{E}}_{\mathrm{t}} = {\mathrm{E}} \), \( {\mathrm{F}}_{{{\mathrm{t}} + 1}} = {\mathrm{F}}_{\mathrm{t}} = {\mathrm{F}} \), \( {\mathrm{V}}_{{{\mathrm{t}} + 1}} = {\mathrm{V}}_{\mathrm{t}} = {\mathrm{V}} \) and \( {\mathrm{L}}_{{{\mathrm{wt}} + 1}} = {\mathrm{L}}_{\mathrm{wt}} = {\mathrm{L}}_{\mathrm{w}} \), Eq. (A.26) becomes

$$ \begin{aligned} & \rho_{\mathrm{w}} {\mathrm{L}}_{\mathrm{w}}^{\phi - 1} {\mathrm{V}}^{\phi - 1} \\ & \quad - \frac{{\left[ {\frac{1}{(1 - \zeta )} - \rho_{\mathrm{w}} } \right](1 - \tau ) ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{\phi } }}{{[(1 - \eta )(1 - \tau )({\mathrm{nE)}}^{\eta } - ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ) (\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )] [ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{\phi } {\mathrm{V}}^{ - \phi } (1 - \tau ) - {\mathrm{L}}_{\mathrm{w}}^{\phi } ]}}\\ & \quad \left\{ \frac{{( 1- {\mathrm{b}}_{\mathrm{k}} \tau )(1 - \tau ) ( 1- \delta_{\mathrm{H}} )}}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{wt}} )^{1 - \phi } {\mathrm{V}}^{\phi } }} \right. \\ & \quad + \frac{{[(1 - \eta )(1 - \tau )({\mathrm{nE)}}^{\eta } - ( 1- \tau {\mathrm{b}}_{\mathrm{K}} ) (\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]{\mathrm{L}}_{\mathrm{w}}^{\phi } }}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )}} \\ & \quad \left. - \frac{{( 1- {\mathrm{b}}_{\mathrm{k}} \tau )g ( {\mathrm{E)}}}}{{\rho_{\mathrm{c}} {\mathrm{VL}}_{\mathrm{w}}^{1 - \phi } }} \right\} = 0, \\ \end{aligned} $$

which—by using (B.1) to substitute for V—can be rewritten as

$$ e ( {\mathrm{E)}} = 0, $$
(B.2)

where

$$ \begin{aligned} e({\mathrm{E)}} & = \rho_{\mathrm{w}} [(1 - \eta )({\mathrm{nE)}}^{\eta } (1 - \tau ) - ( 1- {\mathrm{b}}_{\mathrm{k}} \tau ) (\delta_{\mathrm{K}} - \delta_{\mathrm{H}} ) ] \\ & \quad - [g({\mathrm{E)}} - \rho_{\mathrm{w}} ( 1- \delta_{\mathrm{H}} ) ]( 1- {\mathrm{b}}_{\mathrm{k}} \tau ) \\ & \quad + \left[ {\frac{1}{(1 - \zeta )} - \rho_{\mathrm{w}} } \right]\left\{ \frac{{( 1- {\mathrm{b}}_{\mathrm{k}} \tau )}}{{\rho_{\mathrm{c}} }} \right. \\ & \left. \quad \quad - \frac{{ [(1 - \eta )({\mathrm{nE)}}^{\eta } (1 - \tau ) - ( 1- {\mathrm{b}}_{\mathrm{k}} \tau ) (\delta_{\mathrm{K}} - \delta_{\mathrm{H}} ) ][\chi ({\mathrm{E}})]^{{\frac{1}{\phi }}} }}{{[g ( {\mathrm{E)}} - \rho_{\mathrm{w}} ( 1- \delta_{\mathrm{H}} ) ]}} \right\}g ( {\mathrm{E)}} \\ \end{aligned} $$

Notice that any value of E satisfying (B.2) and such that \( g({\mathrm{E)}} > \rho_{\mathrm{w}} ( 1- \delta_{\mathrm{H}} ) \), say E*, is a BGP value of Et.

  1. B.3

    By setting \( {\mathrm{E}}_{{{\mathrm{t}} + 1}} = {\mathrm{E}}_{\mathrm{t}} = {\mathrm{E}} \), \( {\mathrm{F}}_{{{\mathrm{t}} + 1}} = {\mathrm{F}}_{\mathrm{t}} = {\mathrm{F}} \), \( {\mathrm{V}}_{{{\mathrm{t}} + 1}} = {\mathrm{V}}_{\mathrm{t}} = {\mathrm{V}} \) and \( {\mathrm{L}}_{{{\mathrm{wt}} + 1}} = {\mathrm{L}}_{\mathrm{wt}} = {\mathrm{L}}_{\mathrm{w}} \), Eq. (A.24) becomes

$$ \begin{aligned} & \frac{{\xi \tau \alpha \gamma ({\mathrm{L}}_{\mathrm{w}}^{\phi } {\mathrm{V}}^{\phi - 1} + {\mathrm{F}})[\left( {\mathrm{nE}} \right)^{\eta } - {\mathrm{b}}_{\mathrm{K}} g({\mathrm{E}}) + {\mathrm{b}}_{\mathrm{K}} (1 - \delta_{\mathrm{K}} )]}}{{{\mathrm{n}}(1 - \alpha )(1 - \tau )^{2} \beta \eta \left( {\mathrm{nE}} \right)^{\eta - 1} (1 - {\mathrm{E}})}} \\ & \quad + \frac{{\xi \tau \alpha {\mathrm{F}}}}{(1 - \alpha )(1 - \tau )} - \left( {\frac{\mathrm{n}}{\mathrm{V}} + 1} \right)[g({\mathrm{E}}) - 1+ \delta_{\mathrm{H}} ] \\ & \quad \times \frac{{\xi \tau \alpha ({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{\phi } (1 - \phi )(1 - \tau {\mathrm{b}}_{\mathrm{K}} ){\mathrm{b}}_{\mathrm{H}} (1 - \tau {\mathrm{b}}_{\mathrm{H}} )^{ - 1} }}{{{\mathrm{n}}(1 - \alpha )[(1 - \tau )(1 - \eta )\left( {\mathrm{nE}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}} \\ & \quad - \frac{{\alpha [(1 - \beta )(1 - {\mathrm{E)}} - \gamma ]({\mathrm{L}}_{\mathrm{w}}^{\phi } {\mathrm{V}}^{\phi - 1} + {\mathrm{F}})}}{{(1 - \alpha )(1 - \tau )\beta (1 - {\mathrm{E}})}} - \frac{{\alpha {\mathrm{F}}}}{(1 - \alpha )(1 - \tau )} \\ &\quad - \frac{{\alpha ({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{\phi } (1 - \phi )(1 - \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \alpha )^{ - 1} }}{{[(1 - \tau )(1 - \eta )\left( {\mathrm{nE}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}} \\ & \quad \left\{ {\frac{{[g ( {\mathrm{E)}} - 1+ \delta_{\mathrm{H}} ]}}{\mathrm{V}} - \frac{{\zeta q ( {\mathrm{V,L}}_{\mathrm{w}} ,{\mathrm{E)}}}}{{(1 - \zeta )(1 - \tau {\mathrm{b}}_{\mathrm{H}} )}}\left( {\frac{{\xi {\mathrm{L}}}}{\mathrm{n}} - {\mathrm{L}}_{\mathrm{w}} } \right)} \right\} = 0, \\ \end{aligned} $$

from which (by using (B.1) to substitute for V and by setting E = E*) one can obtain

$$ {\mathrm{F}} = z({\mathrm{L}}_{\mathrm{w}} ,{\mathrm{E*}}), $$
(B.3)

where

$$ \begin{aligned} z(.) & = \left\{ {\frac{{\alpha {\mathrm{L}}_{\mathrm{w}} [\chi ({\mathrm{E*}})]^{{\frac{\phi - 1}{\phi }}} [ ( 1- \beta )(1 - {\mathrm{E*}}) - \gamma ]}}{{\beta (1 - {\mathrm{E*}})(1 - \tau )({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{1 - \phi } }} - \frac{{\xi \tau \alpha \gamma {\mathrm{L}}_{\mathrm{w}} [\chi ({\mathrm{E*}})]^{{\frac{\phi - 1}{\phi }}} [\left( {\mathrm{nE*}} \right)^{\eta } - {\mathrm{b}}_{\mathrm{K}} g({\mathrm{E*}}) + {\mathrm{b}}_{\mathrm{K}} (1 - \delta_{\mathrm{K}} )]}}{{{\mathrm{n}}(1 - \tau )^{2} \beta \eta \left( {\mathrm{nE*}} \right)^{\eta - 1} (1 - {\mathrm{E*}})({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{1 - \phi } }}} \right. \\ & \quad + \left[ {\frac{{\xi \tau {\mathrm{b}}_{\mathrm{H}} }}{{{\mathrm{n}}(1 - \tau {\mathrm{b}}_{\mathrm{H}} )}}\left( {\frac{{{\mathrm{nL}}_{\mathrm{w}} [\chi ( {\mathrm{E*)}}]^{{ - \frac{1}{\phi }}} }}{{({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )}} + 1} \right) + \frac{{{\mathrm{L}}_{\mathrm{w}} [\chi ( {\mathrm{E*)}}]^{{ - \frac{1}{\phi }}} }}{{({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )}}} \right]\frac{{\alpha ({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{\phi } (1 - \phi )(1 - \tau {\mathrm{b}}_{\mathrm{K}} )[g({\mathrm{E}}* )- 1+ \delta_{\mathrm{H}} ]}}{{[(1 - \tau )(1 - \eta )\left( {\mathrm{nE*}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}} \\ & \quad + \frac{{\zeta \alpha \phi (\xi {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )\left[ {(1 - \tau )\left( {\mathrm{nE*}} \right)^{\eta } (1 - \eta ) - [\chi ({\mathrm{E*}})]^{{\frac{1 - \phi }{\phi }}} (1 - \tau )(1 - {\mathrm{b}}_{\mathrm{K}} \tau ) ( 1- \delta_{\mathrm{H}} )+ ( 1- \delta_{\mathrm{K}} )(1 - {\mathrm{b}}_{\mathrm{K}} \tau )} \right]}}{{ ( 1- \zeta ) {\mathrm{n}}[\chi ({\mathrm{E*}})]^{{\frac{ 1}{\phi }}} [(1 - \tau )(1 - \eta )\left( {\mathrm{nE*}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )][[\chi ({\mathrm{E*}})]^{ - 1} (1 - \tau ) - 1]({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{1 - \phi } }} \\ & \quad \left. { - \frac{{\zeta \alpha \phi (\xi {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{\phi - 1} }}{{ ( 1- \zeta ) {\mathrm{n}}[[\chi ({\mathrm{E*}})]^{ - 1} (1 - \tau ) - 1]}}} \right\}\left\{ {\frac{{\xi \tau \alpha \gamma [\left( {\mathrm{nE*}} \right)^{\eta } - {\mathrm{b}}_{\mathrm{K}} g({\mathrm{E*}}) + {\mathrm{b}}_{\mathrm{K}} (1 - \delta_{\mathrm{K}} )]}}{{{\mathrm{n}}(1 - \tau )^{2} \beta \eta \left( {\mathrm{nE*}} \right)^{\eta - 1} (1 - {\mathrm{E*}})}} + \frac{\xi \tau \alpha }{(1 - \tau )} - \frac{{\alpha ( 1- \gamma - {\mathrm{E*)}}}}{{\beta (1 - \tau ) ( 1- {\mathrm{E*)}}}}} \right\}^{ - 1} . \\ \end{aligned} $$
  1. B.4

    By setting \( {\mathrm{E}}_{{{\mathrm{t}} + 1}} = {\mathrm{E}}_{\mathrm{t}} = {\mathrm{E}} \), \( {\mathrm{F}}_{{{\mathrm{t}} + 1}} = {\mathrm{F}}_{\mathrm{t}} = {\mathrm{F}} \), \( {\mathrm{V}}_{{{\mathrm{t}} + 1}} = {\mathrm{V}}_{\mathrm{t}} = {\mathrm{V}} \) and \( {\mathrm{L}}_{{{\mathrm{wt}} + 1}} = {\mathrm{L}}_{\mathrm{wt}} = {\mathrm{L}}_{\mathrm{w}} \), Eq. (A.25) becomes

$$ \begin{aligned} & \frac{\mathrm{nF}}{(1 - \alpha )} + \frac{{(1 - \xi )\tau \alpha \gamma ({\mathrm{L}}_{\mathrm{w}}^{\phi } {\mathrm{V}}^{\phi - 1} + {\mathrm{F}})[\left( {\mathrm{nE}} \right)^{\eta } - {\mathrm{b}}_{\mathrm{K}} g({\mathrm{E}}) + {\mathrm{b}}_{\mathrm{K}} (1 - \delta_{\mathrm{K}} )]}}{{(1{ - }\alpha )(1{ - }\tau )^{2} \beta \eta \left( {\mathrm{nE}} \right)^{{\eta { - 1}}} (1- {\mathrm{E}})}} \\ & \quad + \frac{{( 1- \xi ){\mathrm{n}}\tau \alpha {\mathrm{F}}}}{(1 - \alpha )(1 - \tau )} - ({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{\phi } - \left( {\frac{\mathrm{n}}{\mathrm{V}} + 1} \right) \\ & \quad \times \frac{{[g({\mathrm{E}}) - 1+ \delta_{\mathrm{H}} ](1 - \xi )\tau \alpha ({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{\phi } (1 - \phi )(1 - \tau {\mathrm{b}}_{\mathrm{K}} ){\mathrm{b}}_{\mathrm{H}} }}{{(1 - \alpha )(1 - \tau {\mathrm{b}}_{\mathrm{H}} )[(1 - \tau )(1 - \eta )\left( {\mathrm{nE}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}} \\ & \quad - \frac{{\zeta \alpha ({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{\phi } (1 - \phi )(1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\xi {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )q ( {\mathrm{V,L}}_{\mathrm{w}} , {\mathrm{E*)}}}}{{(1 - \zeta )(1 - \tau {\mathrm{b}}_{\mathrm{H}} )(1 - \alpha )[(1 - \tau )(1 - \eta )\left( {\mathrm{nE}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}} \\ & \quad - \frac{{\alpha (1 - \tau {\mathrm{b}}_{\mathrm{K}} )[g({\mathrm{E}}) - 1+ \delta_{\mathrm{H}} ]({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{\phi } (1 - \phi )}}{{(1 - \alpha )[(1 - \tau )(1 - \eta )\left( {\mathrm{nE}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}} \\ & \quad - \frac{{({\mathrm{L}}_{\mathrm{w}}^{\phi } {\mathrm{V}}^{\phi - 1} + {\mathrm{F}})(1 - \tau {\mathrm{b}}_{\mathrm{K}} )[g({\mathrm{E}}) - 1+ \delta_{\mathrm{K}} ]}}{{(\alpha \gamma )^{ - 1} \beta \eta (1 - \alpha )(1 - \tau )^{2} (1 - {\mathrm{E}})\left( {\mathrm{nE}} \right)^{{\eta { - 1}}} }} + \frac{{\alpha \gamma ({\mathrm{L}}_{\mathrm{w}}^{\phi } {\mathrm{V}}^{\phi - 1} + {\mathrm{F}})(1 - \eta ){\mathrm{nE}}}}{{(1 - \alpha )(1 - \tau )\eta \beta (1 - {\mathrm{E}})}} = 0, \\ \end{aligned} $$

from which (by using (B.1) to substitute for V and by setting E = E*) one can obtain

$$ {\mathrm{F}} = p({\mathrm{L}}_{\mathrm{w}} ,{\mathrm{E*}}), $$
(B.4)

where

$$ \begin{aligned} p(.) & = \left\{ {\left[ {\frac{{(1 - \xi )\tau {\mathrm{b}}_{\mathrm{H}} }}{{(1 - \tau {\mathrm{b}}_{\mathrm{H}} )}}\left( {\frac{{{\mathrm{nL}}_{\mathrm{w}} [\chi ( {\mathrm{E*)}}]^{{ - \frac{1}{\phi }}} }}{{({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )}} + 1} \right) + 1} \right] \frac{{({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{\phi } \alpha (1 - \phi )(1 - \tau {\mathrm{b}}_{\mathrm{K}} )[g({\mathrm{E}}* )- 1+ \delta_{\mathrm{H}} ]}}{{[(1 - \tau )(1 - \eta )\left( {\mathrm{nE}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}} \right. \\ & \quad - \frac{{\zeta \alpha \phi (\xi {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )\left[ {(1 - \tau )\left( {\mathrm{nE*}} \right)^{\eta } (1 - \eta ) - [\chi ({\mathrm{E*}})]^{{\frac{1 - \phi }{\phi }}} (1 - \tau )(1 - {\mathrm{b}}_{\mathrm{K}} \tau ) ( 1- \delta_{\mathrm{H}} )+ ( 1- \delta_{\mathrm{K}} )(1 - {\mathrm{b}}_{\mathrm{K}} \tau )} \right]}}{{ ( 1- \zeta )[\chi ({\mathrm{E*}})]^{{\frac{ 1}{\phi }}} [(1 - \tau )(1 - \eta )\left( {\mathrm{nE*}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )][[\chi ({\mathrm{E*}})]^{ - 1} (1 - \tau ) - 1]({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{1 - \phi } }} \\ & \quad + \frac{{\zeta \alpha \phi (\xi {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{\phi - 1} }}{{ ( 1- \zeta )[[\chi ({\mathrm{E*}})]^{ - 1} (1 - \tau ) - 1]}} - \frac{{(1 - \xi )\tau \alpha \gamma {\mathrm{L}}_{\mathrm{w}} [\chi ({\mathrm{E*}})]^{{\frac{\phi - 1}{\phi }}} [\left( {\mathrm{nE*}} \right)^{\eta } - {\mathrm{b}}_{\mathrm{K}} g({\mathrm{E*}}) + {\mathrm{b}}_{\mathrm{K}} (1 - \delta_{\mathrm{K}} )]}}{{(1 - \tau )^{2} \beta \eta \left( {\mathrm{nE*}} \right)^{\eta - 1} (1 - {\mathrm{E*}})({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{1 - \phi } }} \\ & \quad + \left. {\frac{{\alpha \gamma {\mathrm{L}}_{\mathrm{w}} (1 - \tau {\mathrm{b}}_{\mathrm{K}} )[\chi ({\mathrm{E}})]^{{\frac{\phi - 1}{\phi }}} [g({\mathrm{E*}}) - 1+ \delta_{\mathrm{K}} ]}}{{(1 - \tau )^{2} \beta \eta \left( {\mathrm{nE*}} \right)^{{\eta { - 1}}} (1 - {\mathrm{E*}})({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{1 - \phi } }} + \frac{(1 - \alpha )}{{({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{ - \phi } }} - \frac{{\alpha \gamma (1 - \eta ){\mathrm{L}}_{\mathrm{w}} {\mathrm{nE*}}[\chi ({\mathrm{E*}})]^{{\frac{\phi - 1}{\phi }}} }}{{\beta \eta (1 - {\mathrm{E*}})(1 - \tau )({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}} )^{1 - \phi } }}} \right\} \\ & \left\{ \frac{{(1 - \xi ){\mathrm{n}}\tau \alpha }}{(1 - \tau )} + \frac{{(1 - \xi )\tau \alpha \gamma [\left( {\mathrm{nE*}} \right)^{\eta } - {\mathrm{b}}_{\mathrm{K}} g({\mathrm{E*}}) + {\mathrm{b}}_{\mathrm{K}} (1 - \delta_{\mathrm{K}} )]}}{{(1 - \tau )^{2} \beta \eta \left( {\mathrm{nE*}} \right)^{\eta - 1} (1 - {\mathrm{E*}})}} + \frac{{\alpha \gamma {\mathrm{nE*(1}} - \eta )}}{{\eta \beta ( 1- {\mathrm{E*)(1}} - \tau )}} \right. \\ & \quad + \left. {{\mathrm{n}} - \frac{{\alpha \gamma (1 - \tau {\mathrm{b}}_{\mathrm{K}} )[g({\mathrm{E*)}} - 1+ \delta_{\mathrm{K}} ]}}{{\beta \eta (1 - \tau )^{ 2} (1 - {\mathrm{E*}})({\mathrm{nE*}})^{\eta - 1} }}} \right\}^{ - 1} . \\ \end{aligned} $$
  1. B.5

    By setting z(Lw, E*) = p(Lw, E*), one can solve for the BGP value of Lwt:

$$ {\mathrm{L}}_{\mathrm{w}}^{ *} = {\mathrm{L}}l ( {\mathrm{E*),}} $$
(B.5)

where

$$ \begin{aligned} l({\mathrm{E*)}} & = \left\{ {\left\{ {\frac{{\alpha (1 - \phi )(1 - \tau {\mathrm{b}}_{\mathrm{K}} )[g({\mathrm{E}}* )- 1+ \delta_{\mathrm{H}} ]}}{{[(1 - \tau )(1 - \eta )\left( {\mathrm{nE}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}\left[ {\frac{{\tau (1 - \xi ) {\mathrm{b}}_{\mathrm{H}} }}{{(1 - \tau {\mathrm{b}}_{\mathrm{H}} )}} + 1} \right] + \frac{\zeta \alpha \phi \xi }{{ ( 1- \zeta )[[\chi ({\mathrm{E*}})]^{ - 1} (1 - \tau ) - 1]}}} \right.} \right. \\ & \quad \left. { - \frac{{\zeta \alpha \phi \xi \left[ {(1 - \tau )\left( {\mathrm{nE*}} \right)^{\eta } (1 - \eta ) - [\chi ({\mathrm{E*}})]^{{\frac{1 - \phi }{\phi }}} (1 - \tau )(1 - {\mathrm{b}}_{\mathrm{K}} \tau ) ( 1- \delta_{\mathrm{H}} )+ ( 1- \delta_{\mathrm{K}} )(1 - {\mathrm{b}}_{\mathrm{K}} \tau )} \right]}}{{ ( 1- \zeta )[\chi ({\mathrm{E*}})]^{{\frac{ 1}{\phi }}} [(1 - \tau )(1 - \eta )\left( {\mathrm{nE*}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )][[\chi ({\mathrm{E*}})]^{ - 1} (1 - \tau ) - 1]}} + 1 - \alpha } \right\} \\ & \qquad \left\{ \frac{{\alpha \gamma {\mathrm{nE*(1}} - \eta )}}{{\eta \beta ( 1- {\mathrm{E*)(1}} - \tau )}} + \frac{{(1 - \xi )\tau \alpha \gamma [\left( {\mathrm{nE*}} \right)^{\eta } - {\mathrm{b}}_{\mathrm{K}} g({\mathrm{E*}}) + {\mathrm{b}}_{\mathrm{K}} (1 - \delta_{\mathrm{K}} )]}}{{(1 - \tau )^{2} \beta \eta \left( {\mathrm{nE*}} \right)^{\eta - 1} (1 - {\mathrm{E*}})}}\right. \\ & \qquad \left. { + \frac{{(1 - \xi ){\mathrm{n}}\tau \alpha }}{ ( 1- \tau )} + {\mathrm{n}} - \frac{{\alpha \gamma (1 - \tau {\mathrm{b}}_{\mathrm{K}} )[g({\mathrm{E*)}} - 1+ \delta_{\mathrm{K}} ]}}{{\beta \eta (1 - \tau )^{ 2} (1 - {\mathrm{E*}})({\mathrm{nE*}})^{\eta - 1} }}} \right\}^{ - 1} \\ \end{aligned} $$
$$\begin{aligned} &- \left\{ {\frac{{\zeta \alpha \phi \xi \left[ {(1 - \tau )\left( {\mathrm{nE*}} \right)^{\eta } (1 - \eta ) - [\chi ({\mathrm{E*}})]^{{\frac{1 - \phi }{\phi }}} (1 - \tau )(1 - {\mathrm{b}}_{\mathrm{K}} \tau ) ( 1- \delta_{\mathrm{H}} )+ ( 1- \delta_{\mathrm{K}} )(1 - {\mathrm{b}}_{\mathrm{K}} \tau )} \right]}}{{ ( 1- \zeta ) {\mathrm{n}}[\chi ({\mathrm{E*}})]^{{\frac{ 1}{\phi }}} [(1 - \tau )(1 - \eta )\left( {\mathrm{nE*}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )][[\chi ({\mathrm{E*}})]^{ - 1} (1 - \tau ) - 1]}}} \right.\\ & - \frac{{\zeta \alpha - \xi [ ( 1- \zeta ) {\mathrm{n]}}^{ - 1} }}{{[[\chi ({\mathrm{E*}})]^{ - 1} (1 - \tau ) - 1]}} + \left. {\frac{{\xi \tau {\mathrm{b}}_{\mathrm{H}} \alpha (1 - \phi )(1 - \tau {\mathrm{b}}_{\mathrm{K}} )[g({\mathrm{E}}* )- 1+ \delta_{\mathrm{H}} ](1 - \tau {\mathrm{b}}_{\mathrm{H}} )^{ - 1} }}{{{\mathrm{n}}[(1 - \tau )(1 - \eta )\left( {\mathrm{nE*}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}} \right\}\\ &\quad\left\{ {\frac{{[\left( {\mathrm{nE*}} \right)^{\eta } - {\mathrm{b}}_{\mathrm{K}} g({\mathrm{E*}}) + {\mathrm{b}}_{\mathrm{K}} (1 - \delta_{\mathrm{K}} )]}}{{{\mathrm{n}}(1 - \tau )^{2} \beta \eta \left( {\mathrm{nE*}} \right)^{\eta - 1} (1 - {\mathrm{E*}})(\xi \tau \alpha \gamma )^{ - 1} }} - } \right.\frac{{\alpha ( 1- \gamma - {\mathrm{E*)}}}}{{\beta ( 1- {\mathrm{E*)(1}} - \tau )}} \left. { + \left. {\frac{\xi \tau \alpha }{(1 - \tau )}} \right\}^{ - 1} } \right\} \\ &\quad \left\{ {\left\{ {\frac{{\zeta \alpha \phi ( 1- \zeta )^{ - 1} }}{{[[\chi ({\mathrm{E*}})]^{ - 1} (1 - \tau ) - 1]}} + \left[ {\frac{{\xi \tau {\mathrm{b}}_{\mathrm{H}} }}{{(1 - \tau {\mathrm{b}}_{\mathrm{H}} )}}\left( {[\chi ( {\mathrm{E*)}}]^{{\frac{ - 1}{\phi }}} - 1} \right) + [\chi ( {\mathrm{E*)}}]^{{\frac{ - 1}{\phi }}} } \right] } \right.} \right. \\ & \qquad\qquad\frac{{(1 - \phi )\alpha (1 - \tau {\mathrm{b}}_{\mathrm{K}} )[g({\mathrm{E}}* )- 1+ \delta_{\mathrm{H}} ]}}{{[(1 - \tau )(1 - \eta )\left( {\mathrm{nE*}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}\\ \end{aligned} $$
$$ \begin{aligned} & \quad - \frac{{\zeta \alpha \phi \left[ {(1 - \tau )\left( {\mathrm{nE*}} \right)^{\eta } (1 - \eta ) - [\chi ({\mathrm{E*}})]^{{\frac{1 - \phi }{\phi }}} (1 - \tau )(1 - {\mathrm{b}}_{\mathrm{K}} \tau ) ( 1- \delta_{\mathrm{H}} )+ ( 1- \delta_{\mathrm{K}} )(1 - {\mathrm{b}}_{\mathrm{K}} \tau )} \right]}}{{ ( 1- \zeta )[\chi ({\mathrm{E*}})]^{{\frac{ 1}{\phi }}} [(1 - \tau )(1 - \eta )\left( {\mathrm{nE*}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )][[\chi ({\mathrm{E*}})]^{ - 1} (1 - \tau ) - 1]}} \\ &\quad \left. + \frac{{\alpha [ ( 1- \beta )(1 - {\mathrm{E*}}) - \gamma ]\chi ({\mathrm{E*}})}}{{[\chi ({\mathrm{E*}})]^{{\frac{ 1}{\phi }}} \beta (1 - \tau )(1 - {\mathrm{E*}})}} - \frac{{\xi \tau \alpha \gamma [\left( {\mathrm{nE*}} \right)^{\eta } - {\mathrm{b}}_{\mathrm{K}} g({\mathrm{E*}}) + {\mathrm{b}}_{\mathrm{K}} (1 - \delta_{\mathrm{K}} )]}}{{[\chi ({\mathrm{E*}})]^{{\frac{{ 1 { - }\varphi }}{\varphi }}} {\mathrm{n}}(1 - \tau )^{2} \beta \eta \left( {\mathrm{nE*}} \right)^{\eta - 1} (1 - {\mathrm{E*}})}} \right\} \\ &\left\{ {\frac{{\xi \tau \alpha \gamma [\left( {\mathrm{nE*}} \right)^{\eta } - {\mathrm{b}}_{\mathrm{K}} g({\mathrm{E*}}) + {\mathrm{b}}_{\mathrm{K}} (1 - \delta_{\mathrm{K}} )]}}{{{\mathrm{n}}(1 - \tau )^{2} \beta \eta \left( {\mathrm{nE*}} \right)^{{\eta { - 1}}} (1 - {\mathrm{E*}})}} + \frac{\xi \tau \alpha }{(1 - \tau )} - \frac{{\alpha ( 1- \gamma - {\mathrm{E*)}}}}{{\beta ( 1- {\mathrm{E*)}}(1 - \tau )}}} \right\}^{ - 1} \\ & + \bigg\{{\mathrm{n}}(1 - \alpha ) +\left[ {\frac{{(1 - \xi )\tau {\mathrm{b}}_{\mathrm{H}} }}{{(1 - \tau {\mathrm{b}}_{\mathrm{H}} )}}\left({1 - [x ( {\mathrm{E*)}}]^{{ - \frac{1}{\phi }}} } \right) + 1} \right]\\&\frac{\mathrm{n}\alpha (1 - \phi )(1 - \tau {\mathrm{b}}_{\mathrm{K}})[g({\mathrm{E}}* )- 1+ \delta_{\mathrm{H}}]}{[(1 - \tau )(1 - \eta )\left( {\mathrm{nE}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]} + \frac{{\alpha \gamma (1 - \eta )\mathrm{nE*}[x({\mathrm{E*}})]^{\frac{\phi - 1}{\phi }}}}{{\beta \eta (1 - {\mathrm{E*}})(1 - \tau )}} \\ \end{aligned} $$
$$ \begin{aligned} & \quad - \frac{{\zeta \alpha \phi {\mathrm{n}}\left[ {(1 - \tau )\left( {{\mathrm{nE*}}} \right)^{\eta } (1 - \eta ) - [\chi ({\mathrm{E*}})]^{{\frac{{1 - \phi }}{\phi }}} (1 - \tau )(1 - {\mathrm{b}}_{{\mathrm{K}}} \tau ){\mathrm{(1}} - \delta _{{\mathrm{H}}} {\mathrm{)}} + {\mathrm{(1}} - \delta _{{\mathrm{K}}} {\mathrm{)}}(1 - {\mathrm{b}}_{{\mathrm{K}}} \tau )} \right]}}{{{\mathrm{(1}} - \zeta {\mathrm{)}}[\chi ({\mathrm{E*}})]^{{\frac{{\mathrm{1}}}{\phi }}} [(1 - \tau )(1 - \eta )\left( {{\mathrm{nE*}}} \right)^{\eta } - (1 - \tau {\mathrm{b}}_{{\mathrm{K}}} )(\delta _{{\mathrm{K}}} - \delta _{{\mathrm{H}}} )][[\chi ({\mathrm{E*}})]^{{ - {\mathrm{1}}}} (1 - \tau ) - {\mathrm{1}}]}} \\ & \quad + \frac{{\zeta \alpha \phi {\mathrm{n(1}} - \zeta {\mathrm{)}}^{{ - {\mathrm{1}}}} }}{{[[\chi ({\mathrm{E*}})]^{{ - {\mathrm{1}}}} (1 - \tau ) - {\mathrm{1}}]}}- \frac{{\alpha \gamma (1 - \tau {\mathrm{b}}_{{\mathrm{K}}} )[g({\mathrm{E*)}} - {\mathrm{1}} + \delta _{{\mathrm{K}}} ][\chi ({\mathrm{E*}})]^{{\frac{{\phi - {\mathrm{1}}}}{\phi }}} }}{{(1 - \tau )^{2} \beta \eta ({\mathrm{nE*)}}^{{\eta - {\mathrm{1}}}} (1 - {\mathrm{E*}})}} \\ & \quad \left. + \frac{{(1 - \xi )\tau \alpha \gamma [\left( {{\mathrm{nE*}}} \right)^{\eta } - {\mathrm{b}}_{{\mathrm{K}}} g({\mathrm{E*}}) + {\mathrm{b}}_{{\mathrm{K}}} (1 - \delta _{{\mathrm{K}}} )][\chi ({\mathrm{E*}})]^{{\frac{{\phi - {\mathrm{1}}}}{\phi }}} }}{{(1 - \tau )^{2} \beta \eta \left( {{\mathrm{nE*}}} \right)^{{\eta - {\mathrm{1}}}} (1 - {\mathrm{E*}})}} \right\}\left\{ {\frac{{(1 - \xi ){\mathrm{n}}\tau \alpha }}{{(1 - \tau )}}} \right. \\ & \quad +\frac{{(1 - \xi )\tau \alpha \gamma [\left( {{\mathrm{nE*}}} \right)^{\eta } - {\mathrm{b}}_{{\mathrm{K}}} g({\mathrm{E*}}) + {\mathrm{b}}_{{\mathrm{K}}} (1 - \delta _{{\mathrm{K}}} )]}}{{(1 - \tau )^{2} \beta \eta \left( {{\mathrm{nE*}}} \right)^{{\eta - {\mathrm{1}}}} (1 - {\mathrm{E*}})}} + \frac{{\alpha \gamma {\mathrm{nE*(1}} - \eta {\mathrm{)}}}}{{\eta \beta {\mathrm{(1}} - {\mathrm{E*)}}(1 - \tau )}} \\ &\quad \left. {\left. +\, {\mathrm{n}}- \frac{{\alpha \gamma (1 - \tau {\mathrm{b}}_{{\mathrm{K}}} )[g({\mathrm{E*)}} - {\mathrm{1}} + \delta _{{\mathrm{K}}} ]}}{{\beta \eta (1 - \tau {\mathrm{)}}^{{\mathrm{2}}} (1 - {\mathrm{E*}})({\mathrm{nE*}})^{{\eta - {\mathrm{1}}}} }} \right\}^{{ - {\mathrm{1}}}} } \right\}^{{ - {\mathrm{1}}}} \\ \end{aligned} $$

Notice that the BGP value of Vt and Ft are given, respectively, by

$$ {\mathrm{V*}} = [\chi ( {\mathrm{E*)]}}^{{ \, \frac{ 1}{\phi }}} \frac{{({\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{ *} )}}{{{\mathrm{L}}_{\mathrm{w}}^{ *} }} $$
(B.6)

and

$$ {\mathrm{F*}} = z({\mathrm{L}}_{\mathrm{w}}^{*} ,{\mathrm{E*}}) = p({\mathrm{L}}_{\mathrm{w}}^{*} ,{\mathrm{E*}}). $$
(B.7)
  1. B.6

    Along a BGP, total income is given by

$$ \begin{aligned} & {\mathrm{K}}_{\mathrm{t}} ({\mathrm{nE*)}}^{\eta } + {\mathrm{P}}_{\mathrm{t}} [ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } {\mathrm{H}}_{\mathrm{ct}}^{1 - \phi } + {\mathrm{n(L}}_{\mathrm{w}}^{*} )^{\phi } {\mathrm{H}}_{\mathrm{wt}}^{1 - \phi } ] \\ \quad & = \frac{{{\mathrm{H}}_{\mathrm{ct}} (1 - \tau {\mathrm{b}}_{\mathrm{H}} )[(1 - \eta )(1 - \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}{{(1 - \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \phi )(1 - \tau ) ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } }} \\ & \quad \times \left\{ {\frac{{\gamma {\mathrm{nE*[(L}}_{\mathrm{w}}^{ *} )^{\phi } ({\mathrm{V*)}}^{\phi - 1} + {\mathrm{F*]}}}}{{ ( 1- {\mathrm{E*)(1}} - \tau )\beta \eta }} + ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } + {\mathrm{n(L}}_{\mathrm{w}}^{ *} )^{\phi } ({\mathrm{V*)}}^{\phi - 1} } \right\}. \\ \end{aligned} $$
(B.8)

Notice that (B.8) includes the imputed rent for self-owned housing.

Along a BGP, capitalists’ (pre-tax and pre-government transfers) income is given by

$$ \begin{aligned} \frac{{{\mathrm{K}}_{\mathrm{t}} ({\mathrm{nE*)}}^{\eta } }}{{ ( 1- \eta )^{ - 1} }} + \frac{{{\mathrm{P}}_{\mathrm{t}} ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } }}{{{\mathrm{H}}_{\mathrm{ct}}^{\phi - 1} }} & = \frac{{{\mathrm{H}}_{\mathrm{ct}} [(1 - \eta )(1 - \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}{{(1 - \tau {\mathrm{b}}_{\mathrm{H}} )^{ - 1} (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \phi )(1 - \tau ) ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } }} \\ & \quad \times \left\{ {\frac{{\gamma {\mathrm{nE*[(L}}_{\mathrm{w}}^{ *} )^{\phi } ({\mathrm{V*)}}^{\phi - 1} + {\mathrm{F*]}}}}{{ ( 1- \eta )^{ - 1} ( 1- {\mathrm{E*)(1}} - \tau )\beta \eta }} + ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } } \right\}. \\ \end{aligned} $$
(B.9)

Notice that (B.9) includes the imputed rent for self-owned housing.

Along a BGP, capitalists’ (post-tax and post-government transfers) income is given by

$$ \begin{aligned} & \frac{{{\mathrm{H}}_{\mathrm{ct}} [(1 - \eta )(1 - \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}{{(1 - \tau {\mathrm{b}}_{\mathrm{H}} )^{ - 1} (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \phi )(1 - \tau ) ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } }} \\ & \quad \left\{ {\frac{{ [ ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{\phi } ({\mathrm{V*)}}^{\phi - 1} + {\mathrm{F*]}}}}{{[\gamma {\mathrm{nE*(1}} - \eta ) ]^{ - 1} ( 1- {\mathrm{E*)}}\beta \eta }} + ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } - \tau \xi {\mathrm{nF*}}} \right\} \\ & \quad + {\mathrm{H}}_{\mathrm{ct}} {\mathrm{b}}_{\mathrm{H}} \tau \xi [g({\mathrm{E*)}} - 1+ \delta_{\mathrm{H}} ] \\ & \quad + \frac{{{\mathrm{H}}_{\mathrm{ct}} {\mathrm{b}}_{\mathrm{K}} \tau \xi [(1 - \eta ) ( 1- \tau ) ( {\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]\gamma (1 - \tau {\mathrm{b}}_{\mathrm{H}} ) [g ( {\mathrm{E*)}} - 1+ \delta_{\mathrm{k}} ]}}{{(1 - \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \phi ) ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } ( 1- {\mathrm{E*)(nE*)}}^{\eta - 1} ( 1- \tau )^{ 2} \beta \eta [ ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{\phi } ({\mathrm{V*)}}^{\phi - 1} + {\mathrm{F*]}}^{ - 1} }} \\ & \quad - \frac{{\zeta {\mathrm{H}}_{\mathrm{ct}} \phi }}{(1 - \zeta )}\left\{ \frac{{[(1 - \eta ) ( 1- \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} ) ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{ - \phi } ({\mathrm{V*)}}^{ - 1} }} + \frac{{(1 - \tau {\mathrm{b}}_{\mathrm{K}} ) ( 1- \tau ) ( 1- \delta_{\mathrm{H}} )}}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{1 - \phi } ( {\mathrm{V*}})^{\phi - 1} }}\right. \\ & \quad \left. - \frac{(1 - \eta ) ( 1- \tau )}{{ ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{1 - \phi } ({\mathrm{nE*)}}^{ - \eta } }}{ - }\frac{{ ( 1- \delta_{\mathrm{K}} ) ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )}}{{ ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{1 - \phi } }} \right\} \\ & \quad \times \frac{{(1 - \tau {\mathrm{b}}_{\mathrm{H}} )(\xi {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )[ (1 - \phi )(1 - \tau {\mathrm{b}}_{\mathrm{K}} )]^{ - 1} }}{{[ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } ({\mathrm{V*)}}^{1 - \phi } ( 1- \tau )- {\mathrm{V*(L}}_{\mathrm{w}}^{*} )^{\phi } ]}} - ( 1- \xi )\tau {\mathrm{H}}_{\mathrm{ct}} \left\{ {\frac{{[g({\mathrm{E*)}} - 1+ \delta_{\mathrm{H}} ]}}{{ ( {\mathrm{nb}}_{\mathrm{H}} )^{ - 1} {\mathrm{V*}}}}} \right. \\ & \quad \left. { - \frac{{(1 - \tau {\mathrm{b}}_{\mathrm{H}} )[(1 - \eta ) ( 1- \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]{\mathrm{nE*}}\gamma [ ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{\phi } ({\mathrm{V*)}}^{\phi - 1} + {\mathrm{F*]}}}}{{(1 - \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \phi ) ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } ( 1- {\mathrm{E*)(1}} - \tau )^{ 2} \beta \eta }}} \right\}. \\ \end{aligned} $$
(B.10)

Notice that (B.10) includes the imputed rent for self-owned housing.

  1. B.7

    Along a BGP, the stock of productive capital, total wealth and capitalists’ wealth are given, respectively, by

$$ {\mathrm{K}}_{\mathrm{t}} = \frac{{{\mathrm{H}}_{\mathrm{ct}} (1 - \tau {\mathrm{b}}_{\mathrm{H}} )\gamma [(1 - \eta )(1 - \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )] [ ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{\phi } ({\mathrm{V*)}}^{\phi - 1} + {\mathrm{F*]}}}}{{(1 - \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \phi )({\mathrm{nE*)}}^{\eta - 1} ( 1- {\mathrm{E*)(1}} - \tau )^{ 2} \beta \eta ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } }}, $$
(B.11)
$$ \begin{aligned}& {\mathrm{K}}_{\mathrm{t}} + {\mathrm{Q}}_{\mathrm{t}} {\mathrm{L}} + {\mathrm{H}}_{\mathrm{ct}} + {\mathrm{nH}}_{\mathrm{wt}} \\ &\quad = \frac{{{\mathrm{H}}_{\mathrm{ct}} (1 - \tau {\mathrm{b}}_{\mathrm{H}} )\gamma [(1 - \eta )(1 - \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )] [ ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{\phi } ({\mathrm{V*)}}^{\phi - 1} + {\mathrm{F*]}}}}{{(1 - \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \phi )({\mathrm{nE*)}}^{\eta - 1} ( 1- {\mathrm{E*)(1}} - \tau )^{ 2} \beta \eta ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } }} \\ & \quad + {\mathrm{H}}_{\mathrm{ct}} + \frac{{{\mathrm{nH}}_{\mathrm{ct}} }}{\mathrm{V*}} + \frac{{{\mathrm{H}}_{\mathrm{ct}} \phi (1 - \tau {\mathrm{b}}_{\mathrm{H}} )[(1 - \zeta ) (1 - \phi )(1 - \tau {\mathrm{b}}_{\mathrm{K}} )]^{ - 1} {\mathrm{L}}}}{{[ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } ({\mathrm{V*)}}^{1 - \phi } ( 1- \tau )- {\mathrm{V*(L}}_{\mathrm{w}}^{*} )^{\phi } ]}} \\ & \quad \times \left\{ \frac{{[(1 - \eta )(1 - \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} ) ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{ - \phi } ({\mathrm{V*)}}^{ - 1} }} + \frac{{(1 - \tau {\mathrm{b}}_{\mathrm{K}} ) ( 1- \tau ) ( 1- \delta_{\mathrm{H}} )}}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{1 - \phi } ( {\mathrm{V*}})^{\phi - 1} }} \right. \\ &\quad \quad \left. - \frac{(1 - \eta ) ( 1- \tau )}{{({\mathrm{nE*)}}^{ - \eta } ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{1 - \phi } }} - \frac{{ ( 1- \delta_{\mathrm{K}} ) ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )}}{{ ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{1 - \phi } }} \right\} \\ \end{aligned} $$
(B.12)

and

$$\begin{aligned} & {\mathrm{K}}_{\mathrm{t}} + {\mathrm{Q}}_{\mathrm{t}} ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{ *} ) + {\mathrm{H}}_{\mathrm{ct}}\\ &\quad = \frac{{{\mathrm{H}}_{\mathrm{ct}} (1 - \tau {\mathrm{b}}_{\mathrm{H}} )\gamma [(1 - \eta )(1 - \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )] [ ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{\phi } ({\mathrm{V*)}}^{\phi - 1} + {\mathrm{F*]}}}}{{(1 - \tau {\mathrm{b}}_{\mathrm{K}} )(1 - \phi )({\mathrm{nE*)}}^{\eta - 1} ( 1- {\mathrm{E*)(1}} - \tau )^{ 2} \beta \eta ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } }} \\ & \quad + \left\{ \frac{{[(1 - \eta )(1 - \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )]}}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} ) ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{ - \phi } ({\mathrm{V*)}}^{ - 1} }} + \frac{{(1 - \tau {\mathrm{b}}_{\mathrm{K}} ) ( 1- \tau ) ( 1- \delta_{\mathrm{H}} )}}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{1 - \phi } ( {\mathrm{V*}})^{\phi - 1} }} \right. \\ & \quad \left. - \frac{(1 - \eta ) ( 1- \tau )}{{({\mathrm{nE*)}}^{{{ - }\eta }} ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{1 - \phi } }} - \frac{{ ( 1- \delta_{\mathrm{K}} ) ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )}}{{ ( {\mathrm{L}}_{\mathrm{w}}^{ *} )^{1 - \phi } }} \right\} \\ & \quad \times \frac{{{\mathrm{H}}_{\mathrm{ct}} \phi (1 - \tau {\mathrm{b}}_{\mathrm{H}} )[(1 - \zeta ) (1 - \phi )(1 - \tau {\mathrm{b}}_{\mathrm{K}} )]^{ - 1} ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{ *} )}}{{[ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{*} )^{\phi } ({\mathrm{V*)}}^{1 - \phi } ( 1- \tau )- {\mathrm{V*(L}}_{\mathrm{w}}^{*} )^{\phi } ]}} + {\mathrm{H}}_{\mathrm{ct}} \\ \end{aligned} $$
(B.13)
  1. B.8

    Along a BGP, the discounted sequence of utilities of the representative worker is given by

$$\begin{aligned} \sum\limits_{{{\mathrm{v}} = {\mathrm{0}}}}^{\infty } {\rho _{{\mathrm{w}}}^{{\mathrm{v}}} } & \left\{ {\beta {\mathrm{ln}}\left[ {{\mathrm{H}}_{{{\mathrm{ct}} + {\mathrm{v}}}}^{{{\mathrm{1}} - \phi }} \left( {\frac{{{\mathrm{(L}}_{{\mathrm{w}}}^{*} {\mathrm{)}}^{\phi } }}{{{\mathrm{(V*)}}^{{{\mathrm{1}} - \phi }} }} + {\mathrm{F*}}} \right)} \right] + \gamma {\mathrm{ln(1}} - {\mathrm{E*)}}} \right. \\ & \quad + {\mathrm{(1}} - \beta - \gamma {\mathrm{)ln}}\left[ {\frac{{{\mathrm{H}}_{{{\mathrm{ct}} + {\mathrm{v}}}} {\mathrm{((L}}_{{\mathrm{w}}}^{*} {\mathrm{)}}^{\phi } {\mathrm{(V*)}}^{{\phi - {\mathrm{1}}}} + {\mathrm{F*)(1}} - \tau {\mathrm{b}}_{{\mathrm{H}}} {\mathrm{)}}}}{{{\mathrm{(1}} - \phi {\mathrm{)(1}} - \tau {\mathrm{)}}\beta {\mathrm{(1}} - \beta - \gamma {\mathrm{)}}^{{{\mathrm{ - 1}}}} {\mathrm{(1}} - \tau {\mathrm{b}}_{{\mathrm{K}}} {\mathrm{)}}}}} \right] + \\ & \quad + {\mathrm{(1}} - \beta - \gamma {\mathrm{)ln }}\left. {\left[ {\frac{{(1 - \eta )(1 - \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{{\mathrm{K}}} )(\delta _{{\mathrm{K}}} - \delta _{{\mathrm{H}}} )}}{{{\mathrm{(L}} - {\mathrm{nL}}_{{\mathrm{w}}}^{{\mathrm{*}}} )^{\phi } }}} \right]} \right\}, \\ \end{aligned}$$

which can be rewritten as

$$ \begin{aligned} & \frac{{\gamma \,{\mathrm{ln(1}} - {\mathrm{E*)}}}}{{ 1- \rho_{\mathrm{w}} }} + \frac{(1 - \gamma )}{{ 1- \rho_{\mathrm{w}} }}{ \ln }\left( {\frac{{ ( {\mathrm{L}}_{\mathrm{w}}^{*} )^{\phi } }}{{ ( {\mathrm{V*)}}^{1 - \phi } }} + {\mathrm{F*}}} \right) \\ & \quad + \frac{(1 - \beta - \gamma )}{{ 1- \rho_{\mathrm{w}} }}{ \ln }\left[ {\frac{{ ( 1- \tau {\mathrm{b}}_{\mathrm{H}} ) ( 1- \beta - \gamma )}}{{ (1 - \phi ) ( 1- \tau )\beta ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )}}} \right] \\ & \quad + \frac{ ( 1- \beta - \gamma )}{{ 1- \rho_{\mathrm{w}} }}{ \ln }\left[ {\frac{{(1 - \eta )(1 - \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )}}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{ *} )^{\phi } }}} \right] \, \\ & \quad + \frac{(1 - \beta \phi - \gamma )}{{ 1- \rho_{\mathrm{w}} }}\left\{ {{\mathrm{ln(H}}_{\mathrm{ct}} ) + \frac{{\rho_{\mathrm{w}} \ln [g({\mathrm{E*)}}]}}{{ 1- \rho_{\mathrm{w}} }}} \right\}. \\ \end{aligned} $$
(B.14)

Along a BGP, the discounted sequence of utilities of the representative capitalist is given by

$$ \begin{aligned} \sum\limits_{{{\mathrm{v}} = {\mathrm{0}}}}^{\infty } {\rho _{{\mathrm{c}}}^{{\mathrm{v}}} } & \left\{ {\alpha {\mathrm{ln}}\left[ {{\mathrm{H}}_{{{\mathrm{ct}} + {\mathrm{v}}}}^{{{\mathrm{1 }} - \phi }} {\mathrm{((L}} - {\mathrm{nL}}_{{\mathrm{w}}}^{{\mathrm{*}}} )^{\phi } - {\mathrm{nF*)}}} \right]} \right. \\ & \quad + (1 - \alpha {\mathrm{)ln}}\left[ {\frac{{{\mathrm{H}}_{{{\mathrm{ct}} + {\mathrm{v}}}} {\mathrm{((L}} - {\mathrm{nL}}_{{\mathrm{w}}}^{{\mathrm{*}}} )^{\phi } - {\mathrm{nF*)(1}} - \tau {\mathrm{b}}_{{\mathrm{H}}} {\mathrm{)(1}} - \alpha {\mathrm{)}}}}{{\alpha {\mathrm{(1}} - \phi {\mathrm{)(1}} - \tau {\mathrm{b}}_{{\mathrm{K}}} {\mathrm{)}}}}} \right] + \\ {\mathrm{ }} & \quad \left. { + (1 - \alpha {\mathrm{)ln}}\left[ {\frac{{(1 - \eta )(1 - \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{{\mathrm{K}}} )(\delta _{{\mathrm{K}}} - \delta _{{\mathrm{H}}} )}}{{{\mathrm{(L}} - {\mathrm{nL}}_{{\mathrm{w}}}^{{\mathrm{*}}} )^{\phi } }}} \right]} \right\}, \\ \end{aligned} $$

which can be rewritten as

$$ \begin{aligned} & \frac{{{\mathrm{ln((L}} - {\mathrm{nL}}_{\mathrm{w}}^{ *} )^{\phi } - {\mathrm{nF*)}}}}{{ 1- \rho_{\mathrm{c}} }} + \frac{(1 - \alpha )}{{ 1- \rho_{\mathrm{c}} }}{ \ln }\left[ {\frac{{ ( 1- \tau {\mathrm{b}}_{\mathrm{H}} ) ( 1- \alpha )}}{{\alpha ( 1- \phi ) ( 1- \tau {\mathrm{b}}_{\mathrm{K}} )}}} \right] \\ & \quad+ \frac{ ( 1- \alpha )}{{ 1- \rho_{\mathrm{c}} }}{ \ln }\left[ {\frac{{(1 - \eta )(1 - \tau )({\mathrm{nE*)}}^{\eta } - (1 - \tau {\mathrm{b}}_{\mathrm{K}} )(\delta_{\mathrm{K}} - \delta_{\mathrm{H}} )}}{{ ( {\mathrm{L}} - {\mathrm{nL}}_{\mathrm{w}}^{ *} )^{\phi } }}} \right] \\ & \quad + \frac{(1 - \alpha \phi )}{{ 1- \rho_{\mathrm{c}} }}\left\{ {{\mathrm{ln(H}}_{\mathrm{ct}} ) + \frac{{\rho {}_{\mathrm{c}}\ln [g({\mathrm{E*)}}]}}{{ 1- \rho_{\mathrm{c}} }}} \right\}. \\ \end{aligned} $$
(B.15)

1.3 C Transitional Path

By linearizing the system (A.24)–(A.27) around (E*, V*, F*, \( {\mathrm{L}}_{\mathrm{w}}^{ *} \)), one obtains the following linearized system:

$$ \left[ \begin{aligned} {\mathrm{E}}_{{{\mathrm{t}} + 1}} - {\mathrm{E*}} \hfill \\ {\mathrm{V}}_{{{\mathrm{t}} + 1}} - {\mathrm{V*}} \hfill \\ {\mathrm{F}}_{{{\mathrm{t}} + 1}} - {\mathrm{F*}} \hfill \\ {\mathrm{L}}_{{{\mathrm{wt}} + 1}} - {\mathrm{L}}_{\mathrm{w}}^{ *} \hfill \\ \end{aligned} \right] = \left[ \begin{aligned} {\mathrm{d}}_{ 1 1} {\mathrm{ d}}_{ 1 2} {\mathrm{ d}}_{ 1 3} {\mathrm{ d}}_{ 1 4} \, \hfill \\ {\mathrm{d}}_{ 2 1} {\mathrm{ d}}_{ 2 2} {\mathrm{ d}}_{ 2 3} {\mathrm{ d}}_{ 2 4} \hfill \\ {\mathrm{d}}_{ 3 1} {\mathrm{ d}}_{ 3 2} {\mathrm{ d}}_{ 3 3} {\mathrm{ d}}_{ 3 4} \hfill \\ {\mathrm{d}}_{ 4 1} {\mathrm{ d}}_{ 4 2} {\mathrm{ d}}_{ 4 3} {\mathrm{ d}}_{ 4 4} \hfill \\ \end{aligned} \right]\left[ \begin{aligned} {\mathrm{E}}_{\mathrm{t}} - {\mathrm{E*}} \hfill \\ {\mathrm{V}}_{\mathrm{t}} - {\mathrm{V*}} \hfill \\ {\mathrm{F}}_{\mathrm{t}} - {\mathrm{F*}} \hfill \\ {\mathrm{L}}_{\mathrm{wt}} - {\mathrm{L}}_{\mathrm{w}}^{ *} \hfill \\ \end{aligned} \right], $$
(C.1)

where

$$ \begin{aligned} {\mathrm{d}}_{ 1 1} & \equiv - \frac{{ [{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) ] {\mathrm{d}}_{ 4 1} }}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}} \\ & \quad - \frac{{ [{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{E}}_{\mathrm{t}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{E}}_{\mathrm{t}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{\mathrm{t}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{\mathrm{t}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{\mathrm{t}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) ]}}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}}, \\ \end{aligned} $$
$$ \begin{aligned} {\mathrm{d}}_{ 1 2} & \equiv - \frac{{ [{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) ] {\mathrm{d}}_{ 4 2} }}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}} \\ & \quad - \frac{{[{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{V}}_{\mathrm{t}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{\mathrm{t}} }} )+ {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{V}}_{\mathrm{t}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{\mathrm{t}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{V}}_{\mathrm{t}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )]}}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}}, \\ \end{aligned} $$
$$ \begin{aligned} {\mathrm{d}}_{ 1 3} & \equiv - \frac{{ [{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) ] {\mathrm{d}}_{ 4 3} }}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}} \\ & \quad - \frac{{[{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{\mathrm{t}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{\mathrm{t}} }} )+ {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{\mathrm{t}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{F}}_{\mathrm{t}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{\mathrm{t}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )]}}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}} , { } \\ \end{aligned} $$
$$ \begin{aligned} {\mathrm{d}}_{ 1 4} & \equiv - \frac{{ [{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) ] {\mathrm{d}}_{ 4 4} }}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}} \\ & \quad - \frac{{[{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{L}}_{\mathrm{wt}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{\mathrm{wt}} }} )+ {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{L}}_{\mathrm{wt}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{L}}_{\mathrm{wt}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{L}}_{\mathrm{wt}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )]}}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}}, \\ \end{aligned} $$
$$ \begin{aligned} {\mathrm{d}}_{ 2 1} & \equiv - \frac{{ [{\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} - {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )+ {\Gamma}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) ] {\mathrm{d}}_{ 4 1} }}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}} \\ & \quad - \frac{{ [{\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{\mathrm{t}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{E}}_{\mathrm{t}} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{E}}_{\mathrm{t}} }} - {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{\mathrm{t}} }} ) + {\Gamma}_{{{\mathrm{E}}_{\mathrm{t}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )]}}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}}, \\ \end{aligned} $$
$$ \begin{aligned} {\mathrm{d}}_{ 2 2} & \equiv - \frac{{ [{\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} - {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )+ {\Gamma}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) ] {\mathrm{d}}_{ 4 2} }}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}} \\ & \quad - \frac{{[{\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{\mathrm{t}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{\mathrm{t}} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{\mathrm{t}} }} - {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{\mathrm{t}} }} )+ {\Gamma}_{{{\mathrm{V}}_{\mathrm{t}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) ]}}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}}, \\ \end{aligned} $$
$$ \begin{aligned} {\mathrm{d}}_{ 2 3} & \equiv - \frac{{ [{\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} - {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )+ {\Gamma}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) ] {\mathrm{d}}_{ 4 3} }}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}} \\ & \quad - \frac{{[{\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{\mathrm{t}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{\mathrm{t}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{\mathrm{t}} }} - {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{\mathrm{t}} }} ) + {\Gamma}_{{{\mathrm{F}}_{\mathrm{t}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )]}}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}}, \\ \end{aligned} $$
$$ \begin{aligned} {\mathrm{d}}_{ 2 4} & \equiv - \frac{{ [{\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} - {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )+ {\Gamma}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) ] {\mathrm{d}}_{ 4 4} }}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}} \\ & \quad - \frac{{[{\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{L}}_{\mathrm{wt}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{\mathrm{wt}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{\mathrm{wt}} }} - {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{L}}_{\mathrm{wt}} }} ) + {\Gamma}_{{{\mathrm{L}}_{\mathrm{wt}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )]}}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}}, \\ \end{aligned} $$
$$ \begin{aligned} {\mathrm{d}}_{ 3 1} & \equiv - \frac{{ [{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} )+ {\Gamma}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) ] {\mathrm{d}}_{ 4 1} }}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} { - }{\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} { - }{\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} { - }{\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}} \\ & \quad - \frac{{[{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{E}}_{\mathrm{t}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{\mathrm{t}} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{E}}_{\mathrm{t}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{E}}_{\mathrm{t}} }} ) + {\Gamma}_{{{\mathrm{E}}_{\mathrm{t}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} )]}}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}}, \\ \end{aligned} $$
$$ \begin{aligned} {\mathrm{d}}_{ 3 2} & \equiv - \frac{{ [{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} )+ {\Gamma}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) ] {\mathrm{d}}_{ 4 2} }}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}} \\ & \quad - \frac{{[{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{\mathrm{t}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{\mathrm{t}} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{V}}_{\mathrm{t}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{\mathrm{t}} }} ) + {\Gamma}_{{{\mathrm{V}}_{\mathrm{t}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} )]}}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}}, \\ \end{aligned} $$
$$ \begin{aligned} {\mathrm{d}}_{ 3 3} & \equiv - \frac{{ [{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} )+ {\Gamma}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) ] {\mathrm{d}}_{ 4 3} }}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}} \\ & \quad - \frac{{[{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{\mathrm{t}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{\mathrm{t}} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{\mathrm{t}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{\mathrm{t}} }} ) + {\Gamma}_{{{\mathrm{F}}_{\mathrm{t}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} )]}}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}}, \\ \end{aligned} $$
$$ \begin{aligned} {\mathrm{d}}_{ 3 4} & \equiv - \frac{{ [{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} )+ {\Gamma}_{{{\mathrm{L}}_{{{\mathrm{wt}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) ] {\mathrm{d}}_{ 4 4} }}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} { - }{\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} { - }{\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} { - }{\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}} \\ & \quad - \frac{{[{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{_{{{\mathrm{L}}_{\mathrm{wt}} }} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{_{{{\mathrm{L}}_{\mathrm{wt}} }} }} )+ {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{L}}_{\mathrm{wt}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{L}}_{\mathrm{wt}} }} ) + {\Gamma}_{{{\mathrm{L}}_{\mathrm{wt}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} )]}}{{{\Gamma}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} - {\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} ({\Psi}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} ) + {\Gamma}_{{{\mathrm{E}}_{{{\mathrm{t}} + 1}} }} ({\Omega}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} - {\Omega}_{{{\mathrm{V}}_{{{\mathrm{t}} + 1}} }} {\Psi}_{{{\mathrm{F}}_{{{\mathrm{t}} + 1}} }} )}}, \\ \end{aligned} $$
$$ \begin{aligned} {\text{d}}{}_{ 41} & \equiv \left\{ {{\Lambda}_{{{\text{E}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{E}}_{\text{t}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{E}}_{\text{t}} }} ) + {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{\text{t}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{\text{t}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{E}}_{\text{t}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) ]} \right. \\ & \quad + {\Lambda}_{{{\text{F}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{E}}_{\text{t}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{\text{t}} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{E}}_{\text{t}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{E}}_{\text{t}} }} ) + {\Gamma}_{{{\text{E}}_{\text{t}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} )] \\ & \quad + {\Lambda}_{{{\text{V}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{\text{t}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{E}}_{\text{t}} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{E}}_{\text{t}} }} - {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{\text{t}} }} ) + {\Gamma}_{{{\text{E}}_{\text{t}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} )\left. ] \right\} \\ & \quad \left\{ {{\Lambda}_{{{\text{L}}_{{{\text{wt}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} )]} \right. \\ & \quad - {\Lambda}_{{{\text{E}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ) + {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) ]\\ & \quad - {\Lambda}_{{{\text{F}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} )+ {\Gamma}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) ]\\ & \quad - {\Lambda}_{{{\text{V}}_{{{\text{t}} + 1}} }} \left. { [{\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} - {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} )+ {\Gamma}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) ]} \right\}^{ - 1} , \\ \end{aligned} $$
$$ \begin{aligned} {\text{d}}_{ 42} & \equiv \left\{ {{\Lambda}_{{{\text{E}}_{{{\text{t}} + 1}} }} } \right.[{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{V}}_{\text{t}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{\text{t}} }} )+ {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{V}}_{\text{t}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{\text{t}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{V}}_{\text{t}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} )] \\ & \quad + {\Lambda}_{{{\text{F}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{\text{t}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{\text{t}} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{V}}_{\text{t}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{\text{t}} }} ) + {\Gamma}_{{{\text{V}}_{\text{t}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} )] \\ & \quad + {\Lambda}_{{{\text{V}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{\text{t}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{\text{t}} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{\text{t}} }} - {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{\text{t}} }} )+ {\Gamma}_{{{\text{V}}_{\text{t}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) ]\\ & \quad - {\Lambda}_{{{\text{V}}_{\text{t}} }} [\left. {{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} )]} \right\} \\ & \quad \left\{ {{\Lambda}_{{{\text{L}}_{{{\text{wt}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} )]} \right. \\ & \quad - {\Lambda}_{{{\text{E}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ) + {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) ]\\ & \quad - {\Lambda}_{{{\text{F}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} )+ {\Gamma}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) ]\\ & \quad - {\Lambda}_{{{\text{V}}_{{{\text{t}} + 1}} }} \left. { [{\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} - {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} )+ {\Gamma}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) ]} \right\}^{ - 1} , \\ \end{aligned} $$
$$ \begin{aligned} {\text{d}}_{ 43} & \equiv \left\{ {{\Lambda}_{{{\text{E}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{\text{t}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{\text{t}} }} )+ {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{F}}_{\text{t}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{F}}_{\text{t}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{F}}_{\text{t}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) ]} \right. \\ & \quad + {\Lambda}_{{{\text{F}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{\text{t}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{\text{t}} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{\text{t}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{\text{t}} }} ) + {\Gamma}_{{{\text{F}}_{\text{t}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} )] \\ & \quad + {\Lambda}_{{{\text{V}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{\text{t}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{\text{t}} }} ) + {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{\text{t}} }} - {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{\text{t}} }} ) + {\Gamma}_{{{\text{F}}_{\text{t}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} )] \\ & \quad - {\Lambda}_{{{\text{F}}_{\text{t}} }} [\left. {{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} )]} \right\} \\ & \quad \left\{ {{\Lambda}_{{{\text{L}}_{{{\text{wt}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} )]} \right. \\ & \quad - {\Lambda}_{{{\text{E}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ) + {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) ]\\ & \quad - {\Lambda}_{{{\text{F}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} )+ {\Gamma}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) ]\\ & \quad - {\Lambda}_{{{\text{V}}_{{{\text{t}} + 1}} }} \left. { [{\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} - {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} )+ {\Gamma}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) ]} \right\}^{ - 1} , \\ \end{aligned} $$
$$ \begin{aligned} {\text{d}}_{ 44} & \equiv \left\{ {{\Lambda}_{{{\text{E}}_{{{\text{t}} + 1}} }} } \right.[{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{L}}_{\text{wt}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{\text{wt}} }} )+ {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{L}}_{\text{wt}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{L}}_{\text{wt}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{L}}_{\text{wt}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} )] \\ & \quad + {\Lambda}_{{{\text{F}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{_{{{\text{L}}_{\text{wt}} }} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{_{{{\text{L}}_{\text{wt}} }} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{L}}_{\text{wt}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{\text{wt}} }} ) + {\Gamma}_{{{\text{L}}_{\text{wt}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} )] \\ & \quad + {\Lambda}_{{{\text{V}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{L}}_{\text{wt}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{\text{wt}} }} ) + {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{\text{wt}} }} - {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{L}}_{\text{wt}} }} ) + {\Gamma}_{{{\text{L}}_{\text{wt}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} )] \\ & \quad - {\Lambda}_{{{\text{L}}_{\text{wt}} }} [\left. {{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} )]} \right\} \\ & \quad \left\{ {{\Lambda}_{{{\text{L}}_{{{\text{wt}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} )]} \right. \\ & \quad - {\Lambda}_{{{\text{E}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ) + {\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) + {\Gamma}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) ]\\ & \quad - {\Lambda}_{{{\text{F}}_{{{\text{t}} + 1}} }} [{\Gamma}_{{{\text{V}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} )+ {\Gamma}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{V}}_{{{\text{t}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{V}}_{{{\text{t}} + 1}} }} ) ]\\ & \quad - {\Lambda}_{{{\text{V}}_{{{\text{t}} + 1}} }} \left. { [{\Gamma}_{{{\text{F}}_{{{\text{t}} + 1}} }} ({\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} - {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} )+ {\Gamma}_{{{\text{E}}_{{{\text{t}} + 1}} }} ({\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Psi}_{{{\text{L}}_{{{\text{wt}} + 1}} }} - {\Omega}_{{{\text{L}}_{{{\text{wt}} + 1}} }} {\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} )+ {\Gamma}_{{{\text{L}}_{{{\text{wt}} + 1}} }} ({\Psi}_{{{\text{F}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{E}}_{{{\text{t}} + 1}} }} - {\Psi}_{{{\text{E}}_{{{\text{t}} + 1}} }} {\Omega}_{{{\text{F}}_{{{\text{t}} + 1}} }} ) ]} \right\}^{ - 1} . \\ \end{aligned} $$

Notice that all partial derivatives are evaluated at (E*, V*, F*, \( {\mathrm{L}}_{\mathrm{w}}^{ *} \)).

The solution to (C.1) is

$$ {\mathrm{E}}_{\mathrm{t}} - {\mathrm{E* }} = {\mathrm{ G}}_{ 1} {\mathrm{j}}_{ 1 1} \mu_{ 1}^{\mathrm{t}} + {\mathrm{G}}_{ 2} {\mathrm{j}}_{ 1 2} \mu_{ 2}^{\mathrm{t}} + {\mathrm{G}}_{ 3} {\mathrm{j}}_{ 1 3} \mu_{ 3}^{\mathrm{t}} + {\mathrm{G}}_{ 4} {\mathrm{j}}_{ 1 4} \mu_{ 4}^{\mathrm{t}} , $$
(C.2)
$$ {\mathrm{V}}_{\mathrm{t}} - {\mathrm{V*}} = {\mathrm{G}}_{ 1} {\mathrm{j}}_{ 2 1} \mu_{ 1}^{\mathrm{t}} + {\mathrm{G}}_{ 2} {\mathrm{j}}_{ 2 2} \mu_{ 2}^{\mathrm{t}} + {\mathrm{G}}_{ 3} {\mathrm{j}}_{ 2 3} \mu_{ 3}^{\mathrm{t}} + {\mathrm{G}}_{ 4} {\mathrm{j}}_{ 2 4} \mu_{ 4}^{\mathrm{t}} , $$
(C.3)
$$ {\mathrm{F}}_{\mathrm{t}} - {\mathrm{F*}} = {\mathrm{G}}_{ 1} {\mathrm{j}}_{ 3 1} \mu_{ 1}^{\mathrm{t}} + {\mathrm{G}}_{ 2} {\mathrm{j}}_{ 3 2} \mu_{ 2}^{\mathrm{t}} + {\mathrm{G}}_{ 3} {\mathrm{j}}_{ 3 3} \mu_{ 3}^{\mathrm{t}} + {\mathrm{G}}_{ 4} {\mathrm{j}}_{ 3 4} \mu_{ 4}^{\mathrm{t}} , $$
(C.4)
$$ {\mathrm{L}}_{\mathrm{wt}} - {\mathrm{L}}_{\mathrm{w}}^{ *} = {\mathrm{G}}_{ 1} {\mathrm{j}}_{ 4 1} \mu_{ 1}^{\mathrm{t}} + {\mathrm{G}}_{ 2} {\mathrm{j}}_{ 4 2} \mu_{ 2}^{\mathrm{t}} + {\mathrm{G}}_{ 3} {\mathrm{j}}_{ 4 3} \mu_{ 3}^{\mathrm{t}} + {\mathrm{G}}_{ 4} {\mathrm{j}}_{ 4 4} \mu_{ 4}^{\mathrm{t}} , $$
(C.5)

where \( \left[ \begin{aligned} \mu_{ 1} \, \hfill \\ \mu_{ 2} \hfill \\ \mu_{ 3} \hfill \\ \mu_{ 4} \hfill \\ \end{aligned} \right] \) and \( J \equiv \left[ \begin{aligned} {\mathrm{j}}_{ 1 1} {\mathrm{ j}}_{ 1 2} {\mathrm{ j}}_{ 1 3} {\mathrm{ j}}_{ 1 4} \hfill \\ {\mathrm{j}}_{ 2 1} {\mathrm{ j}}_{ 2 2} {\mathrm{ j}}_{ 2 3} {\mathrm{ j}}_{ 2 4} \hfill \\ {\mathrm{j}}_{ 3 1} {\mathrm{ j}}_{ 3 2} {\mathrm{ j}}_{ 3 3} {\mathrm{ j}}_{ 3 4} \hfill \\ {\mathrm{j}}_{ 4 1} {\mathrm{ j}}_{ 4 2} {\mathrm{ j}}_{ 4 3} {\mathrm{ j}}_{ 4 4} \hfill \\ \end{aligned} \right] \) are, respectively, the eigenvalues and the eigenvectors of the matrix \( D \equiv \left[ \begin{aligned} {\mathrm{d}}_{ 1 1} {\mathrm{ d}}_{ 1 2} {\mathrm{ d}}_{ 1 3} {\mathrm{ d}}_{ 1 4} \, \hfill \\ {\mathrm{d}}_{ 2 1} {\mathrm{ d}}_{ 2 2} {\mathrm{ d}}_{ 2 3} {\mathrm{ d}}_{ 2 4} \hfill \\ {\mathrm{d}}_{ 3 1} {\mathrm{ d}}_{ 3 2} {\mathrm{ d}}_{ 3 3} {\mathrm{ d}}_{ 3 4} \hfill \\ {\mathrm{d}}_{ 4 1} {\mathrm{ d}}_{ 4 2} {\mathrm{ d}}_{ 4 3} {\mathrm{ d}}_{ 4 4} \hfill \\ \end{aligned} \right] \), and \( \left[ \begin{aligned} {\mathrm{G}}_{ 1} \, \hfill \\ {\mathrm{G}}_{ 2} \hfill \\ {\mathrm{G}}_{ 3} \hfill \\ {\mathrm{G}}_{ 4} \hfill \\ \end{aligned} \right] \) are constants whose values are determined by using the initial conditions. The eigenvalues and the eigenvectors can be found by solving, respectively, \( {\mathrm{Det}}(D - {\mathrm{M}}) = 0 \) and DJ = JM, where \({\mathrm{M}} \equiv \left[ {\begin{array}{*{20}l} {\mu _{{\mathrm{1}}} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\mu _{{\mathrm{2}}} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\mu _{{\mathrm{3}}} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & {\mu _{{\mathrm{4}}} } \hfill \\ \end{array} } \right] . \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonatti, L. (2018). Land, Housing, Growth and Inequality. In: Paganetto, L. (eds) Getting Globalization Right. Springer, Cham. https://doi.org/10.1007/978-3-319-97692-1_6

Download citation

Publish with us

Policies and ethics