Skip to main content
  • 437 Accesses

Abstract

To evaluate the stress field in the Martian interior a static-state approach is applied. We use trial interior structure model having 150–300 km thick lithosphere overlying a low rigidity layer, which partly lost elastic properties. Calculations of stresses are performed with spatial resolution a 1 × 1 arc-deg spherical grid and down to 1000 km depth. Stress estimates are calculated in the interiors of the planet under local topography structures, these areas are of interest to reveal the zones of possible marsquakes sources. Large non-hydrostatic stresses under Hellas Planitia, Argyre Planitia, Mare Acidalia, Arcadia Planitia and canyon Valles Marineris may lead to relatively increased seismic activity for these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arkani-Hamed, J. (2000). Strength of Martian lithosphere beneath large volcanoes. J. Geophys. Res. 105, E11, 26713–26732.

    Article  Google Scholar 

  • Banerdt, W.B., Phillips, R.J., Sleep, N.H., Saunders, R.S. (1982). Thick shell tectonics of one plate planets: application to Mars. J. Geophys. Res. 87, B12, 9723–9734.

    Article  Google Scholar 

  • Banerdt, W., Golombek, M.P., Tanaka, K.L. (1992). Stress and tectonics on Mars. Mars, 1, 249–297.

    Google Scholar 

  • Banerdt, W.B., Golombek, M.P. (2000). Tectonics of the Tharsis region of Mars: insights from MGS topography and gravity. In Proceedings of the 31st Lunar and Planetary Science Conference. 2038. pdf.

    Google Scholar 

  • Banerdt, W.B., Smrekar, S., Lognonné, P., Spohn, T., Asmar, S.W., Banfield, D., Boschi, L., Christensen, U., Dehant, V., Folkner, W., Giardini,D., Goetze, W., Golombek, M., Grott, M., Hudson, T., Johnson, C., Kargl, G., Kobayashi, N., Maki, J., Mimoun, D., Mocquet, A., Morgan, P., Panning, M., Pike, W.T., Tromp, J., van Zoest, T., Weber, R., Wieczorek, M.A., Garcia, R., Hurst, K. (2013). InSight: a discovery mission to explore the interior of Mars. In Proceedings of the 44th Lunar and Planetary Science Conference, p. 1915.

    Google Scholar 

  • Belleguic, V., Lognonné, P., Wiezorek, M. (2005). Constraints on the Martian lithosphere from gravity and topography data J. Geophys. Res. 110. E11005. https://doi.org/10.1029/2005je002437.

  • Dimitrova, L.L., Holt, W.E., Haines, A.J., Schultz, R.A. (2006). Toward understanding the history and mechanisms of Martian faulting: The contribution of gravitational potential energy. Geophys. Res. Lett. 33, L08202, https://doi.org/10.1029/2005gl025307.

  • Genova, A., Goossens, S., Lemoine, F.G., Mazarico, E., Neumann, G.A., Smith, D.E., Zuber, M.T. (2016). Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus 272, 228–245.

    Article  Google Scholar 

  • Gudkova, T.V., Batov, A.V., Zharkov, V.N. (2017). Model estimates of non-hydrostatic stresses in the Martian crust and mantle: 1. Two-level model. Solar Syst. Res. 51 (6), 457–478.

    Article  Google Scholar 

  • Knapmeyer M., Oberst J., Hauber E., Wählisch M., Deuchler C., Wagner R. (2006). Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. 111, E11006, https://doi.org/10.1029/2006je002708.

  • Konopliv, A.S., Park, R.S., Folkner, W.M. (2016). An improved JPL Mars gravity field and Orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260.

    Article  Google Scholar 

  • Koshlyakov, E.M., Zharkov, V.N. (1993). On gravity field of Mars. Sol. Syst. Res. 27 (2), 12–21.

    Google Scholar 

  • Manukin, A. B., Kalinnikov, I. I., Kalyuzhny, A. V., Andreev, O. N. (2016). High-sensitivity three-axis seismic accelerometer for measurements at the spacecraft and the planets of the solar system. In Proceedings of Solar System conference 7ms3, IKI RAN.

    Google Scholar 

  • Marchenkov, K.I., Lyubimov, V.M., Zharkov, V.N. (1984). Calculation of load factors for deeply buried density anomalies. Doklady Earth Science Sections 279, 14–16.

    Google Scholar 

  • Marchenkov, K.I., Zharkov, V.N. (1989). Stresses in the Venus crust and the topography of the mantle boundary. Sol. Astron. Lett. 16 (1), 77–81.

    Google Scholar 

  • Plesa, A.-C., Grott, M., Tosi, N., Breuer, D., Spohn, T., Wieczorek, M. (2016). How large are presently heat flux variations across the surface of Mars? J. Geophys. Res. Planets, 121, 12, 2386–2403, https://doi.org/10.1002/2016je005126.

    Google Scholar 

  • Sleep, N.H., Phillips, R.J. (1985). Gravity and lithospheric stress on the terrestrial planets with References to the Tharsis region of Mars. J. Geophys. Res., 90, B6, 4469–4490.

    Article  Google Scholar 

  • Smith, D.E., Zuber, M.T., Frey, H.V., Garvin, J.B., Head, J.W., Muhleman, D.O., Pettengill, G.H., Phillips, R.J., Solomon, S.C., Zwally, H.J., Banerdt, W.B., Duxbury, T.C., Golombek, M.P., Lemoine, F.G., Neumann, G.A., Rowlands, D.D., Aharonson, O., Ford, P.G., Ivanov, A.B., Johnson, C.L., McGavern, P.J., Abshire, J.B., Afzal, and R.S., Sun, X., (2001). Mars Orbiter Laser Altimeter: Experimental summary after the first year of global mapping of Mars. J. Geophys. Res., 106 (E10): 23689–23722.

    Article  Google Scholar 

  • Tenzer, R., Eshagh, M., Jin, S. (2015). Martian sub-crustal stress from gravity and topographic Models. Earth and Planetary Science Letters. 425, 84–92.

    Article  Google Scholar 

  • Zharkov, V.N. Marchenkov, K.I., Lyubimov, V.M. (1986). On long-waves shear stresses in the lithosphere and the mantle of Venus. Sol. Syst. Res., 20, 202–211.

    Google Scholar 

  • Zharkov, V.N., Koshlyakov, E.M., Marchenkov, K.I. (1991). Composition, structure and gravitational field of Mars. Sol. Syst. Res. 25, 515–547.

    Google Scholar 

  • Zharkov, V.N., Gudkova, T.V., Molodensky, S.M. (2009). On models of Mars’ interior and amplitudes of forced nutations. 1. The effects of deviation of Mars from its equilibrium state on the flattening of the core-mantle boundary. Phys. Earth Planet. Inter. 172, 324–334.

    Article  Google Scholar 

  • Zharkov, V.N., Gudkova, T.V. (2016). On model structure of gravity field of Mars. Sol. Syst. Res. 50, 250–267.

    Google Scholar 

  • Zharkov, V.N., Gudkova, T.V., Batov, A.V. (2017). On estimating the dissipative factor of the Martian interior. Sol. Syst. Res. 51, 6, 479–490.

    Article  Google Scholar 

  • Zhong S., Roberts J.H. On the support of the Tharsis Rise on Mars//Earth Planet. Sci. Lett. (2003). V. 214. P. 1–9.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Foundation for Basic Research and Program RAN 28.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Batov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Batov, A., Gudkova, T., Zharkov, V. (2019). Non-hydrostatic Stresses Under the Local Structures on Mars. In: Nurgaliev, D., Khairullina, N. (eds) Practical and Theoretical Aspects of Geological Interpretation of Gravitational, Magnetic and Electric Fields. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-97670-9_27

Download citation

Publish with us

Policies and ethics