Skip to main content

Transition Metal Doped ZnS Monolayer: The First Principles Insights

  • Conference paper
  • First Online:
The Physics of Semiconductor Devices (IWPSD 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 215))

Included in the following conference series:

Abstract

Structural and electronic properties of pristine and transition metal doped ZnS monolayer are investigated within the framework of density functional theory. The pristine ZnS monolayer is showing direct band gap of about 2.8 eV. The investigated transition metal doping showed the transition from non-magnetic semiconductor to a magnetic system e.g. magnetic semiconductor for Co doped ZnS and half metal for Ni doped ZnS monolayers. The Co doped ZnS monolayer showed higher formation energy, confirming the strong bonding than that of Ni doped ZnS monolayer. The electron difference density shows the charge sharing between transition metal (Ni and Co) and S, confirming the covalent bond formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4(1), 42–46 (2005)

    Article  ADS  Google Scholar 

  2. M.S. Khan, A. Srivastava, R. Chaurasiya, M.S. Khan, P. Dua, NH3 and PH3 adsorption through single walled ZnS nanotube: first principle insight. Chem. Phys. Lett. 636, 103–109 (2015)

    Article  ADS  Google Scholar 

  3. M. Nguyen, K. Ernits, K.F. Tai, C.F. Ng, S.S. Pramana, W.A. Sasangka, S.K. Batabyal, T. Holopainen, D. Meissner, A. Neisser, L.H. Wong, ZnS buffer layer for Cu2ZnSn(SSe)4 monograin layer solar cell. Sol. Energy 111, 344–349 (2015)

    Article  ADS  Google Scholar 

  4. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  ADS  Google Scholar 

  5. S.H. Yu, M. Yoshimura, Shape and phase control of ZnS nanocrystals: template fabrication of Wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS·(NH2CH2CH2NH2)0.5. Adv. Mater. 14(4), 296–300 (2002)

    Article  Google Scholar 

  6. N. Krainara, J. Limtrakul, F. Illas, S.T. Bromley, Structural and electronic bistability in ZnS single sheets and single-walled nanotubes. Phys. Rev. B. 83(23), 233305 (2011)

    Google Scholar 

  7. M. Shahrokhi, Quasi-particle energies and optical excitations of ZnS monolayer honeycomb structure. Appl. Surf. Sci. 390, 377–384 (2016)

    Article  ADS  Google Scholar 

  8. Q. Peng, L. Han, X. Wen, S. Liu, Z. Chen, J. Lian, S. De, Mechanical properties and stabilities of g-ZnS monolayers. RSC Adv. 5(15), 11240–11247 (2015)

    Article  Google Scholar 

  9. A. Akhtar, A. Boochani, S.M. Elahi, M. Amiri, M. Molamohammadi, Reflectivity and refractivity index enhancement in H doped ZnS graphene sheet: a first-principles study. Optik. 144, 446–458 (2017)

    Article  ADS  Google Scholar 

  10. P. Ordejón, E. Artacho, J.M. Soler, Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B. 53(16), R10441 (1996)

    Article  ADS  Google Scholar 

  11. D. Sánchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 65(5), 453–461 (1997)

    Article  Google Scholar 

  12. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14(11), 2745 (2002)

    Article  ADS  Google Scholar 

  13. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B. 13(12), 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  14. H. Zheng, X.B. Li, N.K. Chen, S.Y. Xie, W.Q. Tian, Y. Chen, H. Xia, S.B. Zhang, H.B. Sun, Monolayer II-VI semiconductors: a first-principles prediction. Phys. Rev. B. 92(11), 115307 (2015)

    Article  ADS  Google Scholar 

  15. H. Lashgari, A. Boochani, A. Shekaari, S. Solaymani, E. Sartipi, R.T. Mendi, Electronic and optical properties of 2D graphene-like ZnS: DFT calculations. Appl. Surf. Sci. 369, 76–81 (2016)

    Article  ADS  Google Scholar 

  16. J. Ren, H. Zhang, X. Cheng, Electronic and magnetic properties of all 3d transition-metal-doped ZnO monolayers. Int. J. Quantum Chem. 113(19), 2243–2250 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambesh Dixit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaurasiya, R., Dixit, A. (2019). Transition Metal Doped ZnS Monolayer: The First Principles Insights. In: Sharma, R., Rawal, D. (eds) The Physics of Semiconductor Devices. IWPSD 2017. Springer Proceedings in Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-97604-4_9

Download citation

Publish with us

Policies and ethics