Skip to main content

Transport Properties and Sub-band Modulation of the SWCNT Based Nano-scale Transistors

  • Conference paper
  • First Online:
The Physics of Semiconductor Devices (IWPSD 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 215))

Included in the following conference series:

  • 3017 Accesses

Abstract

We apply NEGF formalism on a Single Walled Carbon Nano Tube (SWCNT) based transistor under which it is treated as an open quantum system where the Schrodinger equation for the channel is given as (H + Σ)ψ(r) + (S) = (r). Here, (S) is the source term arising due to the channel/contact hybridization and ‘Σ’ is the self-energy term which is a complex matrix whose real part is related to the corrections in the channel eigenstate energies and imaginary part is related to the broadening of the channel eigenstates. For example, a one-level channel gets hybridized to a Lorentzian density of states under contact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  2. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  3. D.K. Ferry, S.M. Goodnick, J. Bird, Transport in Nanostructures, 2nd edn. (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  4. A. Svizhenko, M.P. Anantram, T.R. Govindan, B. Biegel, R. Venogopal, Two dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91, 2343–2354 (2002)

    Article  ADS  Google Scholar 

  5. R. Venugopal, Z. Ren, S. Dutta, M.S. Lundstrom, D. Jovanovic, Simulating quantum transport in nano-scale transistors-real verses mode space approach. J. Appl. Phys. 92, 3730–3739 (2002)

    Article  ADS  Google Scholar 

  6. R. Venugopal, M. Paulsson, S. Goasguen, S. Datta, M.S. Lundstrom, A simple quantum mechanical treatment of scattering in nanoscale transistors. J. Appl. Phys. 92, 5613–5625 (2003)

    Article  ADS  Google Scholar 

  7. J. Guo, M. Lundstrom, Carbon Nanotube Electronics, ed. by A. Javey, J. Kong (Springer, Berlin, 2007)

    Google Scholar 

  8. M. Lundstrom, J. Guo, Nanoscale Transistors: Device Physics, Modeling and Simulation (Springer, Berlin, 2006)

    Google Scholar 

  9. J. Guo, M. Lundstrom, A Computational Study of Thin-Body, Double-Gate, Schottky Barrier MOSFETs. IEEE Trans. Electron. Dev. 49, 1897–1902 (2002)

    Article  ADS  Google Scholar 

  10. J.-H. Rhew, Z. Ren, M. Lundstrom, A Numerical Study of Ballistic Transport in a NanoScale MOSFET. Solid-State Electron. 46, 1899–1906 (2002)

    Article  ADS  Google Scholar 

  11. S. Datta, Nanoscale modeling: the Green’s function method. Superlattices Microstruct. 28, 253–278 (2000)

    Article  ADS  Google Scholar 

  12. G. Lannaccone, Perspectives and challenges in nanoscale device modeling. Microelectron. J. 36, 614–618 (2005)

    Article  Google Scholar 

  13. R.S. Muller, T.I. Kamins, M. Chan, Device Electronics for Integrated Circuits, 3rd edn. (Wiley, India, 2003)

    Google Scholar 

  14. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969)

    Google Scholar 

  15. A. Girdhar, C. Sathe, K. Schulten, J.-P. Leburton, Graphene Quantum Point Contact Transistor for DNA Sensing. PNAS 110, 16748–16753 (2013)

    Article  ADS  Google Scholar 

  16. H.-S. Philip Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  17. F. Schwiertz, Graphene transistor. Nat. Nanotechnol. 5, 487–496 (2010)

    Article  ADS  Google Scholar 

  18. I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, K.L. Shephard, Current saturation in zero band gap, top-gated graphene field effect transistors. Nat. Nanotechnol. 3, 654–659 (2008)

    Article  ADS  Google Scholar 

  19. Y.-M. Lin, H.-Y. Chiu, K.A. Jenkins, D.B. Farmer, P. Avouris, A. Valdes-Garcia, Dual gate graphene FETs with fT of 50 GHz. IEEE Elect. Dev. Lett. 31, 68–70 (2010)

    Article  ADS  Google Scholar 

  20. G. Liang, N. Neophytou, D.E. Nikonov, M.S. Lundstrom, Performance projections for ballistic graphene nanoribbon FET. IEEE Trans. Elec. Dev. 54, 677–682 (2007)

    Article  ADS  Google Scholar 

  21. S. Datta, Steady-state quantum kinetic equation. Phys. Rev. B(R). 40, 5830–5833 (1989)

    Article  ADS  Google Scholar 

  22. R. Lake, S. Datta, nonequilibrium Green’s function method applied to double-barrier resonant tunneling diodes. Phys. Rev. B 45, 6670–6686 (1992)

    Article  ADS  Google Scholar 

  23. P. Havu, V. Havu, M.J. Puska, R.M. Nieminen, Nonequilibrium transport in two dimensional nanostructures modeled using Green’s function and the finite element method. Phys. Rev. B. 69(115325), 1–13 (2004)

    Google Scholar 

  24. J. Wang, E. Polizzi, M. Lundstrom, A three dimensional quantum simulation of silicon nanowire transistor with effective mass approximation. J. Appl. Phys. 96, 2192–2203 (2004)

    Article  ADS  Google Scholar 

  25. S.E. Laux, A. Kumar, M.V. Fischetti, Analysis of quantum ballistic electron transport in ultra small silicon devices including space charge and geometric effects. J. Appl. Phys. 95, 5545–5582 (2004)

    Article  ADS  Google Scholar 

  26. H. Li, G. Li, Analysis of ballistic transport in nanoscale devices. J. Appl. Phys. 116(084501), 1–14 (2014)

    Google Scholar 

  27. A.I. Khan, M.K. Ashraf, A. Haque, Wave function penetration effects in double gate metal oxide semiconductors field effect transistors. J. Appl. Phys. 105(064505), 1–5 (2009)

    Google Scholar 

  28. A. Trellakis, A.T. Galick, A. Pacelli, U. Ravaioli, Iteration scheme for the solution of two dimensional schrodinger-poisson equations in quantum structures. J. Appl. Phys. 81, 7880–7884 (1997)

    Article  ADS  Google Scholar 

  29. O. Kurniawan, P. Bai, E. Li, Ballistic calculations of nonequilibrium Green’s function in nanoscale devices using finite element method. J. Phys. D: Appl. Phys. 105109, 1–11 (2009)

    Google Scholar 

  30. T. Kubis, P. Vogl, Assessment of approximations in nonequilibrium Green’s function theory. Phys. Rev. B. 83(195304), 1–12 (2011)

    Google Scholar 

  31. F.O. Heinza, A. Schenk, Self consistent modeling of longitudinal quantum effects in nanoscale double gate metal oxide semiconductor field effect transistor. J. Appl. Phys. 100(084314), 1–8 (2006)

    Google Scholar 

  32. G.S.H. Pau, Reduced basis method for simulation of nanodevices. Phys. Rev. B. 78(155425), 1–14 (2008)

    Google Scholar 

  33. E. Polizzi, N. Ben, Abdallah, Self consistent three dimensional models for quantum ballistic transport in open systems. Phys. Rev. B 66(245301), 1–9 (2002)

    Google Scholar 

  34. L.R. Ram-Mohan, K.H. Yoo, J. Moussa, Schrodinger-poisson self consistency in layered quantum semiconductor structures. J. Appl. Phys. 95, 3081–3092 (2004)

    Article  ADS  Google Scholar 

  35. S. Datta, Electrical resistance: an atomistic view. Nanotechnology 15, S433–S451 (2004)

    Article  ADS  Google Scholar 

  36. A. Jorio, M.S. Dresselhaus, G. Dresselhaus (eds.), Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin, Heidelberg, 2008)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the BITS-Pilani Seed Grant Scheme given to N.S. The simulations were performed on IBM rack servers acquired under BITS-Pilani Seed Grant scheme and DST-FIST scheme of Govt. of India. The other author S.P acknowledges BITS-Pilani for his Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niladri Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pratap, S., Sarkar, N. (2019). Transport Properties and Sub-band Modulation of the SWCNT Based Nano-scale Transistors. In: Sharma, R., Rawal, D. (eds) The Physics of Semiconductor Devices. IWPSD 2017. Springer Proceedings in Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-97604-4_24

Download citation

Publish with us

Policies and ethics