Skip to main content

Analytical Modeling and Simulation Study of Homo and Hetero III-V Semiconductor Based Tunnel Field Effect Transistor (TFET)

  • Conference paper
  • First Online:
The Physics of Semiconductor Devices (IWPSD 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 215))

Included in the following conference series:

  • 3007 Accesses

Abstract

High staggered, Moderate staggered and homo junction III–V semiconductor-based heterojunction TFETs are of interest as they allow a high on–off current ratio and high on current through reduction in the tunneling barrier height. GaAsSb/InGaAs based heterojunction p-n-i-n TFET has shown an increase in the drive current when compared to homojunction due to band engineering. Further engineering can be performed by varying tunneling barrier height (Ebeff) from 0.5 to 0.25 eV using differently staggered heterojunction. Thus, the concept of halo doped heterojunction pocket TFET is presented by analytical and simulation study with varying staggered junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.E. Avci, D.H. Morris, I.A. Young, Tunnel field-effect transistors: prospects and challenges. IEEE J. Electron Devices Soc. 3(3), 88–95 (2015)

    Article  Google Scholar 

  2. D. Mohata, B. Rajamohanan, T. Mayer, M. Hudait, J. Fastenau, D. Lubyshev, A.W. Liu, S. Datta, Barrier-engineered arsenide–antimonide heterojunction tunnel FETs with enhanced drive current. IEEE Electron Device Lett. 33(11), 1568–1570 (2012)

    Article  ADS  Google Scholar 

  3. Y.C. Wu, J.H. Tsai, T.K. Chiang, C.C. Chiang, F.M. Wang, Comparative investigation of GaAsSb/InGaAs type-II and InP/InGaAs type-I doped–channel field–effect transistors. Semiconductors 49(2) (2015)

    Article  ADS  Google Scholar 

  4. Sentaurus Users Manual (Synopsis, Inc., 2012)

    Google Scholar 

  5. A. Biswas, S.S. Dan, C. LeRoyer, W. Grabinski, A.M. Ionescu, TCAD simulation of SOI TFETs and calibration of non-local band-to-band tunneling model. Microelectron. Eng. 98, 334–337 (2012)

    Article  Google Scholar 

  6. C. Kampen, A. Burenkov, J. Lorenz, Challenges in TCAD simulations of tunneling field effect transistors, in Proceedings of Solid-State Device Research Conference (ESSDERC), pp. 139–142 (2011)

    Google Scholar 

  7. Y. Taur, J. Wu, J. Min, An analytic model for heterojunction tunnel FETs with exponential barrier. IEEE Trans. Electron Devices 62(5), 1399–1404 (2015)

    Article  ADS  Google Scholar 

  8. B. Syamal, C. Bose, C.K. Sarkar, N. Mohankumar, Effect of single halo doped channel in tunnel FETs: a 2-D modeling study, in Proceedings of IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 1–4 (2010)

    Google Scholar 

  9. D.K. Mohata, R. Bijesh, Y. Zhu, M.K. Hudait, R. Southwick, Z. Chbili, D. Gundlach, J. Suehle, J.M. Fastenau, D. Loubychev, A.K. Liu, Demonstration of improved heteroepitaxy, scaled gate stack and reduced interface states enabling heterojunction tunnel FETs with high drive current and high on-off ratio, in VLSI Technology (VLSIT), pp. 53–54 (2012)

    Google Scholar 

  10. D. Mohata, S. Mookerjea, A. Agrawal, Y. Li, T. Mayer, V. Narayanan, A. Liu, D. Loubychev, J. Fastenau, S. Datta, Experimental staggered-source and N+ pocket-doped channel III–V tunnel field-effect transistors and their scalabilities. Appl. Phys. Express 4(2) (2011)

    Article  ADS  Google Scholar 

  11. D.K. Mohata, Arsenide-antimonide hetero-junction tunnel transistors for low power logic applications. Ph.D. Dissertation, The Pennsylvania State University (2013)

    Google Scholar 

  12. R. Narang, M. Saxena, R.S. Gupta, M. Gupta, Dielectric modulated tunnel field-effect transistor—a biomolecule sensor. IEEE Electron Device Lett. 33(2), 266–268 (2012)

    Article  ADS  Google Scholar 

  13. T.Y. Yu, L.S. Peng, C.W. Lin, Y.M. Hsin, GaAsSb/InGaAs tunnel field effect transistor with a pocket layer. Microelectr. Reliab. (2017)

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Council of Scientific & Industrial Research (CSIR), India (File No. 22(0724)/17/EMR-II).

M. L. Varshika (ENGS3150) would like to thank the Indian Academy of Sciences for providing the opportunity to be a part of SRFP-2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varshika, M.L., Narang, R., Gupta, M., Saxena, M. (2019). Analytical Modeling and Simulation Study of Homo and Hetero III-V Semiconductor Based Tunnel Field Effect Transistor (TFET). In: Sharma, R., Rawal, D. (eds) The Physics of Semiconductor Devices. IWPSD 2017. Springer Proceedings in Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-97604-4_181

Download citation

Publish with us

Policies and ethics