Skip to main content

Investigation of Electronic and Optical Properties of GaSbBi/GaAs Type-II Quantum Wells Using 14-Band k · p Hamiltonian

  • Conference paper
  • First Online:
The Physics of Semiconductor Devices (IWPSD 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 215))

Included in the following conference series:

Abstract

In order to investigate the electronic and optical properties of GaSbBi/GaAs type-II quantum well (QW) system, the well-established 8-band k · p Hamiltonian has been extended to a 14-band matrix. Incorporated dilute Bi in GaSb perturbs the valence and conduction bands of the host material, which leads to a reduction in band gap by about 40 meV/%Bi and an increase in spin-orbit splitting (SO) energy by ~21 meV/%Bi. In case of bulk GaSb0.987Bi0.013, the anticrossing interaction between Bi resonant states and host atom reduces the bandgap (51 meV) and enhance the SO energy (27 meV) of GaSb. A compressive strain of 7.3% perceived in GaSbBi/GaAs QW leads to a substantial increment in the band gap and SO energy to 1.12 eV and 1.217 eV respectively. Better confinement of carriers have been achieved owing to suitable tuning of valence band (VB) and conduction band (CB) offsets, which indeed assist to achieve an optical gain as high as 70/m−1 near the 2.2 µm mid-infrared window for a Type-II QW system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.Y. Lin et al., Appl. Phys. Lett. 96, 123503 (2010)

    Article  ADS  Google Scholar 

  2. M. Geller, C. Kapteyn, L. Müller-Kirsch, R. Heitz, D. Bimberg, Appl. Phys. Lett. 82, 2706 (2003)

    Article  ADS  Google Scholar 

  3. A. Marent et al., Appl. Phys. Lett. 89, 072103 (2006)

    Article  ADS  Google Scholar 

  4. J. Hwang, A.J. Martin, J.M. Millunchick, J.D. Phillips, J. Appl. Phys. 111, 074514 (2012)

    Article  ADS  Google Scholar 

  5. S.Y. Lin et al., Appl. Phys. Lett. 96, 123503 (2010)

    Article  ADS  Google Scholar 

  6. D.P. Samajdar, T.D. Das, S. Dhar, Mater. Sci. Semicond. Process. 40, 539 (2015)

    Article  Google Scholar 

  7. K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins, C.X. Wang, X. Liu, Y.-J. Cho, J. Furdyna, Phys. Rev. B 75, 045203 (2007)

    Article  ADS  Google Scholar 

  8. M.P. Polak et al., J. Phys. D Appl. Phys. 47, 355107 (2014)

    Google Scholar 

  9. M.P. Polak, P. Scharoch, R. Kudrawiec, Semicond. Sci. Technol. 30, 094001 (2015)

    Article  ADS  Google Scholar 

  10. D.P. Samajdar, S. Dhar, Superlattices Microstruct. 89, 112 (2016)

    Article  ADS  Google Scholar 

  11. I. Mal, D.P. Samajdar, T.D. Das, Superlattices Microstruct. 109, 442 (2017)

    Article  ADS  Google Scholar 

  12. S.K. Das, T.D. Das, S. Dhar, M. de la Mare, A. Krier, Infrared Phys. Technol. 55, 156 (2012)

    Article  ADS  Google Scholar 

  13. S.K. Das, T.D. Das, S. Dhar, Semicond. Sci. Technol. 29, 015003 (2014)

    Article  ADS  Google Scholar 

  14. M.K. Rajpalke, W.M. Linhart, M. Birkett, K.M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T.S. Jones, M.J. Ashwin, T.D. Veal, J. Appl. Phys. 116, 043511 (2014)

    Article  ADS  Google Scholar 

  15. M.K. Rajpalke et al., App. Phys. Lett. 103, 142106 (2013)

    Article  ADS  Google Scholar 

  16. H. Zhao, R.A. Arif, N. Tansu, J. Appl. Phys. 104, 043104 (2008)

    Article  ADS  Google Scholar 

  17. R.A. Arif, H. Zhao, Y.K. Ee, N. Tansu, IEEE J. Quantum Electron. 44, 573 (2008)

    Article  ADS  Google Scholar 

  18. T.D. Das, D.P. Samajdar, M.K. Bhowal, S.C. Das, S. Dhar, Curr. Appl. Phys. 16, 1615 (2016)

    Article  ADS  Google Scholar 

  19. I. Mal, D.P. Samajdar, T.D. Das, Superlattices Microstruct. 106, 20 (2017)

    Article  ADS  Google Scholar 

  20. G.L. Bir, G.E. Pikus, Symmetry and strain-induced effects in semiconductors (Wiley, New York, 1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Samajdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mal, I., Hazra, A., Samajdar, D.P., Das, T.D. (2019). Investigation of Electronic and Optical Properties of GaSbBi/GaAs Type-II Quantum Wells Using 14-Band k · p Hamiltonian. In: Sharma, R., Rawal, D. (eds) The Physics of Semiconductor Devices. IWPSD 2017. Springer Proceedings in Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-97604-4_155

Download citation

Publish with us

Policies and ethics