Skip to main content

Genome-Assisted Improvement Strategies for Climate-Resilient Carrots

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Vegetable Crops

Abstract

Carrot is typically categorized as a cool-season vegetable crop that is grown globally with largest per capita production in Europe, but with significant increased production in warmer regions of Asia in the last 50 years. As a high-value vegetable with relatively long postharvest storage life, combined with a high nutritional value attributable to its familiar orange carotenoid pigments, continuing adaptation of carrot to diverse climatic conditions is critical. Traits important to past success and future progress in improving climate resilience depend on the broad genetic diversity of carrot. Classical and modern approaches readily lend themselves to carrot improvement, with significant application of genome-assisted breeding tools expected to expand future prospects of success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Motos JR, Ortuño M, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco M, Hernandez J (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18. https://doi.org/10.3390/agronomy7010018

    Article  CAS  Google Scholar 

  • AhnY-J, SongN (2012) A cytosolic heat shock protein expressed in carrot (Daucus carota L.) enhances cell viability under oxidative and osmotic stress conditions. HortScience47:143–148

    Google Scholar 

  • Alessandro MS, Galmarini CR (2007) Inheritance of vernalization requirement in carrot. J Amer Soc Hort Sci 132:525–529

    Article  Google Scholar 

  • Alessandro MS, Galmarini CR, Iorizzo M, Simon PW (2013) Molecular mapping of vernalization requirementand fertility restoration genes in carrot. Theor Appl Genet 126:415–423

    Article  PubMed  Google Scholar 

  • Ali A, Matthews WC, Cavagnaro PF, Iorizzo M, Roberts PA, Simon PW (2013) Inheritance and mapping of Mj-2, a new source of root-knot nematode (Meloidogyne javanica) resistance in carrot. J Hered105:288–291

    Article  PubMed  CAS  Google Scholar 

  • Algarra M, Fernandes A, Mateus N, de Freitas V, Esteves da Silva JCG, Casado J (2014) Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas. Spain. J Food Compos Anal 33:71–76. https://doi.org/10.1016/j.jfca.2013.11.005

    Article  CAS  Google Scholar 

  • Allender C (2019) Genetic resources for carrot improvement. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 93–100

    Chapter  Google Scholar 

  • Almansouri M, Kinet J-M, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum desf.). Plant Soil 231:243–254. https://doi.org/10.1023/A:1010378409663

    Article  CAS  Google Scholar 

  • Amirsadeghi S, McDonald A, Vanlerberghe G (2007) A glucocorticoid-inducible gene expression system can cause growth defects in tobacco. Planta 226:453–463. https://doi.org/10.1007/s00425-007-0495-1

    Article  CAS  PubMed  Google Scholar 

  • Annon A, Rathore K, Crosby K (2014) Overexpression of a tobacco osmotin gene in carrot (Daucus carota L.) enhances drought tolerance. Vitro Cell Dev Biol—Plant 50:299–306. https://doi.org/10.1007/s11627-013-9590-0

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  • Arango J, Jourdan M, Geoffriau E et al (2014) Carotenehydroxylase activity determines the levels of bothalpha-carotene and total carotenoids in orange carrots. Plant Cell 26:2223–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arscott SA, Tanumihardjo SA (2010) Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Compr Rev Food Sci Food Saf 9:223–239

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391. https://doi.org/10.1104/pp.106.082040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006

    Article  CAS  Google Scholar 

  • Bach IC, Olesen A, Simon PW (2002) PCR-basedmarkers to differentiate the mitochondrial genome ofpetaloid and male fertile carrot (Daucus carota L.). Euphytica 127:353–365

    Article  CAS  Google Scholar 

  • Bado S, Forster B, Ghanim A, Jankowicz-Cieslak J, Berthold J, Luxiang L (2016) Protocols for pre-field screening of mutants for salt tolerance in rice, wheat and barley. Springer Internat Pub

    Google Scholar 

  • Banasiak Ł, Wojewódzka A, Baczyński J, Reduron J-P, Piwczyński M, Kurzyna-Młynik R, Gutaker R, Czarnocka-Cieciura A, Kosmala-Grzechnik S, Spalik K (2016) Phylogeny of Apiaceae subtribe Daucinae and the taxonomic delineation of its genera. Taxon 65:563–585

    Article  Google Scholar 

  • Banga O (1957a) Origin of the European cultivated carrot. Euphytica 6:54–63

    Google Scholar 

  • Banga O (1957b) The development of the original European carrot material. Euphytica 6:64–76

    Google Scholar 

  • Banga O (1963) Main Types of the Western Carotene Carrot and Their Origin. W.E.J, Tjeenk Willink, Zwolle, The Netherlands

    Google Scholar 

  • Bano S, Ashraf M, Akram N (2014) Salt stress regulates enzymatic and nonenzymatic antioxidative defense system in the edible part of carrot (Daucus carota L.). Plant-Environ Interact 9:324–329. https://doi.org/10.1080/17429145.2013.832426

    Article  CAS  Google Scholar 

  • Baranski R (2008) Genetic transformation of carrot (Daucus carota) and other Apiaceae species. Transgen Plant J 2:18–38

    Google Scholar 

  • Baranski R, Lukasiewicz A (2019) Genetic engineering of carrot. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 149–186

    Chapter  Google Scholar 

  • Barnes WC (1936) Effects of some environmental factors on growth and color of carrots. NY Agri Exper Stn Ithaca Memoirs 186:1–36

    Google Scholar 

  • Barthakur S, Babu V, Bansa KC (2001) Over-expression of osmotin induces proline accumulation and confers tolerance to osmotic stress in transgenic tobacco. J Plant BiochemBiotechnol 10:31–37. https://doi.org/10.1007/bf03263103

    Article  CAS  Google Scholar 

  • Baxter I (2009) Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381–386. https://doi.org/10.1016/j.pbi.2009.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein L, Ayers A (1953) Salt tolerance of five varieties of carrots. J Amer Soc Hort Sci 61:360–366

    CAS  Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev 31:491–543. https://doi.org/10.1146/annurev.pp.31.060180.002423

    Article  Google Scholar 

  • Boiteux LS, Belter JG, Roberts PA, Simon PW (2000) RAPD linkage map of the genomic region encompassing the root-knot nematode (Meloidogyne javanica) resistance locus in carrot. Theor Appl Genet 100:439–446

    Article  CAS  Google Scholar 

  • Boiteux LS, Hyman JR, Bach IC, Fonseca MEN, Matthews WC, Roberts PA, Simon PW (2004) Employment of flanking codominant STS markers to estimate allelic substitution effects of a nematode resistance locus in carrot. Euphytica 136:37–44

    Article  CAS  Google Scholar 

  • Bolton A, Nijabat A, Mahmood-ur-Rehman M, Naveed NH, Mannan ATMM, Ali A, Rahim MA, Simon PW (2019) Variation for heat tolerance during seed germination in diverse carrot [Daucus carota (L.)] germplasm. HortScience 54:1470–1476. https://doi.org/10.21273/HORTSCI14144-19

    Article  Google Scholar 

  • Bolton A, Simon P (2019) Variation for salinity tolerance during seed germination in diverse carrot [Daucus carota (L.)] germplasm. HortScience 54:38–44. https://doi.org/10.21273/HORTSCI13333-18

    Article  Google Scholar 

  • Borner T, Linke B, Nothnagel T, Scheike R et al (1995) Inheritance of nuclear and cytoplasmic factors affectingmale sterility in Daucus carota. Adv Plant Breed 18:111–122

    Google Scholar 

  • Bostan H, Senalik D, Simon PW, Iorizzo M (2019) Carrot genetics, omics and breeding toolboxes. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 225–246

    Chapter  Google Scholar 

  • Bowen J, Lay-Yee M, Plummer KIM, Ferguson IAN (2002) The heat shock response is involved in thermotolerance in suspension-cultured apple fruit cells. J Plant Physiol 159:599–606 https://doi.org/10.1078/0176-1617-0752

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448. https://doi.org/10.1126/science.218.4571.443

    Article  CAS  PubMed  Google Scholar 

  • Bradeen J, Simon P (1998) Conversion of an AFLPfragment linked to the carrot Y2 locus to a simple, codominant, PCR-based marker form. Theor ApplGenet 97:960–967

    CAS  Google Scholar 

  • Bradeen JM, Simon PW (2007) Carrot. In: Kole C (ed) GenomeMapping and Molecular Breeding in Plants, vol 5. Vegetables. Springer, Heidelberg, pp 161–184

    Google Scholar 

  • Bradeen JM, Bach IC, Briard M, Le Clerc V, Grzebelus D, Senalik DA Simon PW (2002) Molecular diversity analysis of cultivated carrot (Daucus carota L.) and wild Daucus populations reveals a genetically nonstructured composition. J Amer Soc Hort Sci 127:383–391

    Article  CAS  Google Scholar 

  • Bray E, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1249

    Google Scholar 

  • Broussard MA, Mas F, Howlett B, Pattemore D, Tylianakis JM (2017) Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate. PLoS ONE 12:e0180215. https://doi.org/10.1371/journal.pone.0180215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budahn H, Barański R, Grzebelus D, Kiełkowska et al(2014) Mapping genes governing flower architectureand pollen development in a double mutant populationof carrot. Front Plant Sci 5:504

    Google Scholar 

  • Camejo D, Jiménez A, Alarcón JJ, Torres W, María Gómez J, Sevilla F (2006) Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants.Functional Plant Biol 33:177–187 https://doi.org/10.1071/fp05067

  • Campos MD, Cardoso HG, Linke B, Costa JH, De Melo DF, Justo L, Frederico AMF, Arnholdt-Schmitt B (2009) Differential expression and co‐regulation of carrot AOX genes (Daucus carota). Physiol Plant 137 doi:10.1111/j.1399-3054.2009.01282.x

    Article  CAS  PubMed  Google Scholar 

  • Campos MD, Nogales A, Cardoso HG, Kumar SR, Nobre T, Sathishkumar R, Arnholdt-Schmitt B (2016) Stress-induced accumulation of DcAOX1 and DcAOX2a transcripts coincides with critical time point for structural biomass prediction in carrot primary cultures (Daucus carota L.). Front Genet 7 https://doi.org/10.3389/fgene.2016.00001

  • Carillo P, Annunziata M, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. In: Shanker A, Venkateswaralu B (eds)Abiotic Stress in Plants—Mechanisms and Adaptations, 1st edn. INTECH, pp 21–38

    Google Scholar 

  • Castaneda-Alvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ, Guarino L, Harker RH, Jarvis A, Maxted N, Muller JV, Ramirez-Villegas J, Sosa CC, Struik PC, Vincent H, Toll J (2016) Global conservation priorities for crop wild relatives. Nat Plants 2:16022

    Article  PubMed  Google Scholar 

  • Cavagnaro P, Iorizzo M (2019) Carrot anthocyanin diversity, genetics and genomics. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 261–278

    Chapter  Google Scholar 

  • Cavagnaro PF, Iorizzo M, Yildiz M, Senalik D, Parsons J, Ellison S, Simon PW (2014) A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation. BMC Genom 15:1118

    Article  CAS  Google Scholar 

  • Choudhary R, Saroha A, Swarnkar P (2012) Effect of abscisic acid and hydrogen peroxide on antioxidant enzymes in Syzygium cumini plant. J Food Sci Technol 49:649–652. https://doi.org/10.1007/s13197-011-0464-3

    Article  CAS  PubMed  Google Scholar 

  • Collier R, Finch S (2009) A review of research to address carrot fly (Psila rosae) control in the UK. EPPO Bull 39:121–127

    Article  Google Scholar 

  • Costa JH, Cardoso HG, Campos MD, Zavattieri A, Frederico AM, Fernandes de Melo D, Arnholdt-Schmitt B (2009) Daucus carota L.—An old model for cell reprogramming gains new importance through a novel expansion pattern of alternative oxidase (AOX) genes. Plant Physiol Biochem 47:753–759. https://doi.org/10.1016/j.plaphy.2009.03.011%5bCorrigendum to “Daucus carotaL.- an old model for cell reprogramming gains new importance through a novel expansion patternof alternative oxidase (AOX) genes. Plant Physiol Biochem 85:114.” doi:https://doi.org/10.1016/j.plaphy.2014.11.013]

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in Durum wheat. Plant Physiol 137:807. https://doi.org/10.1104/pp.104.057307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeRose-Wilson L, Gaut B (2011) Mapping salinity tolerance during Arabidopsis thaliana germination and seedling growth. PLoS One 6 doi:10.1371/journal.pone.0022832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538. https://doi.org/10.1016/0003-9861(89)90467-0

    Article  PubMed  Google Scholar 

  • du Toit LJ, Le Clerc V, Briard M (2019) Genetics and genomics of carrot biotic stress. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 317–362

    Chapter  Google Scholar 

  • Duke JA (1992) Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Ellison S, Senalik D, Bostan H, Iorizzo M, Simon P (2017) Fine mapping, transcriptome analysis, andmarker development for Y2, the gene that conditionsbeta-carotene accumulation in carrot (Daucus carotaL.). G3: Genes Genom Genet7:2665–2675. https://doi.org/10.1534/g3.117.043067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellison S, Luby C, Corak K, Coe K et al (2018) Association analysis reveals the importance of the Or gene in carrot (Daucus carota L.) carotenoid presence and domestication. Genetics 210:1–12

    Article  CAS  Google Scholar 

  • Eryılmaz F (2006) The relationships between salt stress and anthocyanin content in higher plants. Biotechnol & Biotechnol Equip 20:47–52. https://doi.org/10.1080/13102818.2006.10817303

    Article  Google Scholar 

  • Essemine J, Ammar S, Bouzid S (2010) Impact of heat stress on germination and growth in higher plants: physiological, biochemical and molecular repercussions and mechanisms of defence. J Biol Sci 10:565–572. https://doi.org/10.3923/jbs.2010.565.572

    Article  CAS  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2019) www.fao.org/statistics

  • Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116:539. https://doi.org/10.1104/pp.116.2.539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Zhang B, Ding W, Liu X, Yang D-L, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232. https://doi.org/10.1038/cr.2013.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319. https://doi.org/10.1093/jxb/erh003

    Article  CAS  PubMed  Google Scholar 

  • Freeman RE, Simon PW (1983) Evidence for simple genetic control of sugar type in carrot (Daucus carota L.). J Amer Soc Hort Sci 108:50–54

    Google Scholar 

  • Fuentes P, Pizarro L, Moreno JC, Handford M, Rodriguez-Concepcion M, Stange C (2012) Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Mol Biol 79:47–59. https://doi.org/10.1007/s11103-012-9893-2

    Article  CAS  PubMed  Google Scholar 

  • Garciarrubio A, Legaria J, Covarrubias A (1997) Abscisic acid inhibits germination of mature Arabidopsis seeds by limiting the availability of energy and nutrients. Planta 203:182–187. https://doi.org/10.1007/s004250050180

    Article  CAS  PubMed  Google Scholar 

  • Gibberd MR, Turner NC, Storey R (2002) Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.). Ann Bot 90:715–724. https://doi.org/10.1093/aob/mcf253

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Gong M, Chen S, Song Y, Li Z (1997) Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Aust J Plant Physiol 24:371–379. https://doi.org/10.1071/PP96118

    Article  CAS  Google Scholar 

  • Graßmann J (2005) Terpenoids as Plant Antioxidants. In: Litwack G (ed) Vitamins andHormones. Academic Press, New Yorkpp, pp 505–535

    Google Scholar 

  • Greer D, Weedon M (2012) Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. ‘Semillon’) leaves on vines grown in a hot climate. Plant, Cell Environ 35:1050–1064. https://doi.org/10.1111/j.1365-3040.2011.02471.x

    Article  Google Scholar 

  • Gregorio G, Senadhira D, Mendoza R (1997) Screening Rice for Salinity Tolerance. IRRI, Manila, Philippines

    Google Scholar 

  • Groves RL, Clements JR, Bradford BZ (2019) Carrot diseases resulting from phytoplasmas and viruses. In: Geoffriau E, Simon PW (eds) Carrot and Other Cultivated Apiaceae, CABI, Oxford, UK, in press

    Google Scholar 

  • Grzebelus D (2019) Genetics and genomics of carrot abiotic stress. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Switzerland, pp 363–372

    Chapter  Google Scholar 

  • Guajardo E, Correa J, Contreras-Porcia L (2016) Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta 243:767–781. https://doi.org/10.1007/s00425-015-2438-6

    Article  CAS  PubMed  Google Scholar 

  • Han KH, Hwang CH (2003) Salt tolerance enhanced by transformation of a P5CS gene in carrot. J Plant Biotechnol 5:157–161

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Intl J Mol Sci 14:9643–9684. https://doi.org/10.3390/ijms14059643

    Article  CAS  Google Scholar 

  • Hooper PL, Hooper PL, Tytell M, Vígh L (2010) Xenohormesis: health benefits from an eon of plant stress response evolution. Cell Stress Chaperones 15:761–770. https://doi.org/10.1007/s12192-010-0206-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang B, Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol 50:1230–1237. https://doi.org/10.1111/j.1744-7909.2008.00735.x

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Li M-Y, Wang F, Xu Z-S, Huang W, Wang G-L, Ma J, Xiong A-S (2015) Heat shock factors in carrot: genome-wide identification, classification, and expression profiles response to abiotic stress. Mol Biol Rep 42:893–905. https://doi.org/10.1007/s11033-014-3826-x

    Article  CAS  PubMed  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393. https://doi.org/10.3389/fpls.2018.00393

    Article  PubMed  PubMed Central  Google Scholar 

  • Iorizzo M, Senalik DA, Ellison SL, Grzebelus D, Cavagnaro PF, Allender C, Brunet J, Spooner DM, Van Deynze A, Simon PW (2013) Genetic structure and domestication of carrot (Daucus carota L. subsp. sativus L.) (Apiaceae). Amer J Bot 100:930–938

    Article  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Macko-Podgórni A, Moranska E, Grzebelus E, Grzebelus D, Ashrafi H, Zheng Z, Cheng S, Spooner D, Van Deynze A, Simon P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666. https://doi.org/10.1038/ng.3565

    Article  CAS  PubMed  Google Scholar 

  • Iorizzo M, Ellison S, Pottorff M, Cavagnaro P (2019a) Carrot molecular genetics and mapping. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer Nature, Cham, Switzerland, pp 101–118

    Chapter  Google Scholar 

  • Iorizzo M, Cavagnaro P, Bostan A, Zhao Y, Zhang J, Simon PW (2019b) A cluster of MYB transcription factors regulates anthocyanin biosynthesis in carrot (Daucus carota L.) root and petiole. Front Plant Sci 9:1927

    Google Scholar 

  • Jain M (2015) Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00375

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice Nucl Acids Res 41:e188–e188. https://doi.org/10.1093/nar/gkt780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jourdan M, Gagne S, Dubois-Laurent C et al (2015) Carotenoid content and root color of cultivated carrot: a candidate-gene association study using an originalbroad unstructured population. PLoS ONE 10:e0116674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung YC, Lee HJ, Yum SS, Soh WY, Cho DY, Auh CK, Lee TK, Soh HC, Kim YS, Lee SC (2005) Drought-inducible—but ABA-independent—thaumatin-like protein from carrot (Daucus carota L.). Plant Cell Rep 24:366–373

    Article  CAS  PubMed  Google Scholar 

  • Just BJ, Santos CA, Yandell BS, Simon PW (2009) Major QTL for carrot color are positionally associatedwith carotenoid biosynthetic genes and interactepistatically in a domesticated x wild carrot cross.Theor Appl Genet 119:1155–1169

    Article  PubMed  Google Scholar 

  • Kahouli B, Borgi Z, Hannachi C (2014) Effect of sodium chloride on the germination of the seeds of a collection of carrot accessions (Daucus carota L.) cultivated in the region of Sidi Bouzid. J Stress Physiol Biochem 10:28–36

    Google Scholar 

  • Kasiri MR, Hassandokht MR, Kashi A, Shahi-Gharahlar A (2013) Evaluation of genetic diversity in Iranian yellow carrot accessions (Daucus carota var. sativus), an exposed to extinction rooty vegetable, using morphological characters. Intl J Agri Crop Sci 6:151–156

    Google Scholar 

  • Keilwagen J, Lehnert H, Berner T, Budahn H, Nothnagel T, Ulrich D, Dunemann F (2017) The terpene synthase gene family of carrot (Daucus carota L.): Identification of QTLs and candidate genes associated with terpenoid volatile compounds. Front Plant Sci 8:1930. https://doi.org/10.3389/fpls.2017.01930

  • Kiełkowska A, Grzebelus E, Lis-Krzyścin A, Maćkowska K (2019) In vitro selection in protoplast cultures of the carrot (Daucus carota L.) and evaluation of the response of regenerants to soil salinity. Plant Cell Tiss Organ Cult 137:379–395

    Article  CAS  Google Scholar 

  • Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, Qi Y, Baranski R (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37:575–586. https://doi.org/10.1007/s00299-018-2252-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovács G, Sorvari S, Scott P, Toldi O (2006) Pyrophosphate: fructose 6-phosphate 1-phosphotransferase operates in net gluconeogenic direction in taproots of cold and drought stressed carrot plants. Acta Biol 50:25–30. https://doi.org/10.1556/AAgr.55.2007.1.8

    Article  CAS  Google Scholar 

  • Kovinich N, Kayanja G, Chanoca A, Otegui M, Grotewold E (2015) Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal Behav 10. https://doi.org/10.1080/15592324.2015.1027850

  • Krishnamurthy A, Rathinasabapathi B (2013) Oxidative stress tolerance in plants: novel interplay between auxin and reactive oxygen species signaling. Plant Signal Behav 8. https://doi.org/10.4161/psb.25761

    Article  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854. https://doi.org/10.1104/pp.104.045187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Funct Roles Second Metab Plant-Environ Interact 119:4–17. https://doi.org/10.1016/j.envexpbot.2015.05.012

    Article  CAS  Google Scholar 

  • Landjeva S, Neumann K, Lohwasser U, Börner A (2008) Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biol Plant 52:259–266. https://doi.org/10.1007/s10535-008-0056-x

    Article  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682. https://doi.org/10.1104/pp.010320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laufer B (1919) Sino-Iranica. Chicago, Field Museum of Natural Hist. Pub. 201; Anthropot Ser 15:451–454

    Google Scholar 

  • Le Clerc V, Briard M (2019) Carrot disease management. In: Geoffriau E, Simon PW (eds) Carrot and other cultivated Apiaceae, CABI, Oxford, UK, in press

    Google Scholar 

  • Le Clerc V, Pawelec A, Birolleau-Touchard C, Suel A, Briard M (2009) Genetic architecture of factors underlying partial resistance to Alternaria leaf blight in carrot. Theor Appl Genet 118:1251–1259

    Article  PubMed  Google Scholar 

  • Le Clerc V, Marques S, Suel A, Huet S, Hamama L, Voisine L, Auperpin E, Jourdan M, Barrot L, Prieur R (2015) QTL mapping of carrot resistance to leaf blight with connected populations: stability across years and consequences for breeding. Theor Appl Genet 128:2177–2187

    Article  PubMed  Google Scholar 

  • Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotianabenthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691. https://doi.org/10.1038/nbt.2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linke B, Alessandro MS, Galmarini C, Nothnagel T (2019) Carrot floral development and reproductive biology. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 27–58

    Chapter  Google Scholar 

  • Maas E, Hoffman G (1977) Crop salt tolerance—current assessment. J Irrig Drain Div 103:115–134

    Google Scholar 

  • Mackevic VI (1929) The carrot of Afghanistan. Bul Appl Bot Genet Plant Breeding 20:517–562

    Google Scholar 

  • Macko-Podgórni A, Machaj G, Stelmach K, Senalik D et al (2017) Characterization of a genomic region under selection in cultivated carrot (Daucus carota subsp. sativus) reveals a candidate domestication gene. Front Plant Sci 8:12

    Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen H, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681. https://doi.org/10.1023/A:1014826730024

    Article  CAS  PubMed  Google Scholar 

  • Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene Hsp17.7, results in increased or decreased thermotolerance. Plant J 20:89–99

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J-K (2013) Application of the CRISPR–Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011. https://doi.org/10.1093/mp/sst121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462. https://doi.org/10.1146/annurev-arplant-042809-112116

    Article  CAS  PubMed  Google Scholar 

  • Møller I, Jensen P, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481. https://doi.org/10.1146/annurev.arplant.58.032806.103946

    Article  CAS  PubMed  Google Scholar 

  • Morales D, Rodríguez P, Dell’Amico J, Nicolás E, Torrecillas A, Sánchez-Blanco M (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant 47:203. https://doi.org/10.1023/B:BIOP.0000022252.70836.fc

    Article  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. https://doi.org/10.1111/j.1469-8137.2005.01487.x

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Schachtman D, Condon A (1995) The significance of a two-phase growth response to salinity in wheat and barley. Aust J Plant Physiol 22:561–569. https://doi.org/10.1071/PP9950561

    Article  CAS  Google Scholar 

  • Munns R, Rawson H (1999) Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Funct Plant Biol 26:459–464. https://doi.org/10.1071/PP99049

    Article  Google Scholar 

  • Munns R, James R (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218. https://doi.org/10.1023/A:1024553303144

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq M, Bhat JA, Mir ZA, Sakina A, Ali S, Singh AK, Tyagi A, Salgotra RK, Dar AA, Bhat R (2018) CRISPR/Cas approach: A new way of looking at plant-abiotic interactions. J Plant Physiol 224–225:156–162. https://doi.org/10.1016/j.jplph.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  • Nakajima Y, Yamamoto T, Muranaka T, Oeda K (1999) Genetic variation of petaloid male-sterile cytoplasm ofcarrots revealed by sequence-tagged sites (STSs). Theor Appl Genet 99:837–843

    Article  CAS  Google Scholar 

  • Nascimento WM, Vieira JV, Silva GO, Reitsma KR, Cantliffe DJ (2008) Carrot seed germination at high temperature: effect of genotype and association with ethylene production. HortScience 43:1538–1543

    Article  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829. https://doi.org/10.1105/tpc.105.031914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissinen AI, Lemmetty A, Pihlava J-M, Jauhiainen L, Munyaneza JE, Vanhala P (2012) Effects of carrot psyllid (Trioza apicalis) feeding on carrot yield and content of sugars and phenolic compounds. Ann Appl Biol 161:68–80

    Article  Google Scholar 

  • Noble C, Rogers M (1992) Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant Soil 146:99–107. https://doi.org/10.1007/BF00012001

    Article  CAS  Google Scholar 

  • Nogales A, Nobre T, Cardoso HG, Muñoz-Sanhueza L, Valadas V, Campos MD, Arnholdt-Schmitt B (2016) Allelic variation on DcAOX1 gene in carrot (Daucus carota L.): An interesting simple sequence repeat in a highly variable intron. Plant Gene 5:49–55. https://doi.org/10.1016/j.plgene.2015.11.001

    Article  CAS  Google Scholar 

  • Noori SAS, Sokhansanj A (2008) Wheat plants containing an osmotin gene show enhanced ability to produce roots at high NaCl concentration. Russ J Plant Physiol 55:256–258. https://doi.org/10.1134/s1021443708020143

    Article  Google Scholar 

  • Osakabe Y, Osakabe K (2017) Genome editing to improve abiotic stress responses in plants. Prog in Mol Biol and Transl Sci, 99–109 doi:10.1016/bs.pmbts.2017.03.007

    Google Scholar 

  • Pachauri R, Reisinger A (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland

    Google Scholar 

  • Park H, Ko E, Jang E, Park S, Lee J, Ahn Y-J (2013) Expression of DcHsp17.7, a small heat shock protein gene in carrot (Daucus carota L.) Hort Environ Biotechnol 54:121–127. https://doi.org/10.1016/j.nbt.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  • Parmar N, Singh KH, Sharma D, Singh L, Kumar P, Nanjundan J, Khan YJ, Chauhan DK, Thakur AK (2017) Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3Biotechnol 7:239. https://doi.org/10.1007/s13205-017-0870-y

  • Palta J, Simon G (2004) Developing and successfully implementing a strategy for breeding frost-hardy carrots. HortScience 39:880

    Article  Google Scholar 

  • Parsons J, Matthews W, Iorizzo M et al (2015) Meloidogyne incognita nematode resistance QTL in carrot. Mol Breed 35:114

    Article  CAS  Google Scholar 

  • Peterson CE, Simon PW (1986) Carrot breeding. In: Vegetable Breeding (ed) Bassett MJ. Crops.AVI, Westport, CN, pp 321–356

    Google Scholar 

  • Radić V, Beatović D, Mrđa J (2007) Salt tolerance of corn genotypes (Zea mays L.) during germination and later growth. J Agri Sci 52:115–120. https://doi.org/10.2298/JAS0702115R

    Article  Google Scholar 

  • Richards RA, Dennett CW, Qualset CO, Epstein E, Norlyn JD, Winslow MD (1987) Variation in yield of grain and biomass in wheat, barley, and triticale in a salt-affected field. Field Crops Res 15:277–287. https://doi.org/10.1016/0378-4290(87)90017-7

    Article  Google Scholar 

  • Rockström J, Falkenmark M (2000) Semiarid crop production from a hydrological perspective: gap between potential and actual yields. Crit Rev Plant Sci 19:319–346. https://doi.org/10.1080/07352680091139259

    Article  Google Scholar 

  • Rodriguez R, Redman R (2005) Balancing the generation and elimination of reactive oxygen species. Proc Natl Acad Sci USA 102:3175. https://doi.org/10.1073/pnas.0500367102

    Article  CAS  PubMed  Google Scholar 

  • Ruhlman T, Lee S-B, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006) Complete plastid genome sequence of Daucus carota: Implications for biotechnology and phylogeny of angiosperms. BMC Genom 7:222

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell Environ 25:163–171. https://doi.org/10.1046/j.0016-8025.2001.00790.x

    Article  CAS  Google Scholar 

  • Santos CAF, Simon PW (2002) QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot roots. Mol Genet Genom 268:122–129

    Article  CAS  Google Scholar 

  • Savicka M, Shkute N (2010) Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 56: https://doi.org/10.2478/v10055-010-0004-x

  • Schmidhalter U, Oertli J (1991) Transpiration/biomass ratio for carrots as affected by salinity, nutrient supply and soil aeration. Plant Soil 135:125–132

    Article  Google Scholar 

  • Schöffl F, Prändl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants. Landes Co, Austin, TX, pp 81–98

    Google Scholar 

  • Schulz B, Westphal L, Wricke G (1994) Linkage groupsof isozymes, RFLP and RAPD markers in carrot(Daucus carota L. sativus). Euphytica 74:67–76

    Article  Google Scholar 

  • Shahid M, Balal R, Pervez M, Abbas T, Ashfaq M, Ghazanfar U, Afzal M, Rashid A, Garcia-Sanchez F, Mattson N (2012) Differential response of pea (Pisum sativum L.) genotypes to salt stress in relation to the growth, physiological attributes antioxidant activity and organic solutes. Aust J Crop Sci 6:828–838

    CAS  Google Scholar 

  • Shannon M (1985) Principles and strategies in breeding for higher salt tolerance. Plant Soil 89:227–241. https://doi.org/10.1007/BF02182244

    Article  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216. https://doi.org/10.1111/pbi.12603

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Habben JE, Archibald RL, Drummond BJ, Chamberlin MA, Williams RW, Lafitte HR, Weers BP (2015) Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both arabidopsis and maize. Plant Physiol 169:266–282. https://doi.org/10.1104/pp.15.00780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2006) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227. https://doi.org/10.1093/jxb/erl164

    Article  PubMed  Google Scholar 

  • Shiota H, Kamada H (2000) Acquisition of desiccation tolerance by cultured carrot cells upon ectopic expression of C-ABI3, a carrot homolog of ABI3. J Plant Physiol 156:510–515. https://doi.org/10.1016/s0176-1617(00)80166-2

    Article  CAS  Google Scholar 

  • Shomer-Ilan A, Jones G, Paleg L (1991) In vitro thermal and salt stability of pyruvate kinase are increased by proline analogues and trigonelline. Funct Plant Biol 18:279–286. https://doi.org/10.1071/PP9910279

    Article  CAS  Google Scholar 

  • Shu S, Gao P, Li L, Yuan Y, Sun J, Guo S (2016) Abscisic acid-induced H2O2 accumulation enhances antioxidant capacity in pumpkin-grafted cucumber leaves under Ca(NO3)2 stress. Front Plant Sci 7:1489. https://doi.org/10.3389/fpls.2016.01489

    Article  PubMed  PubMed Central  Google Scholar 

  • Sies H, Stahl W (1995) Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J Clin Nutr 62:1315S–1321S. https://doi.org/10.1093/ajcn/62.6.1315S

    Article  CAS  PubMed  Google Scholar 

  • Simon PW (2000) Domestication, historical development, and modern breeding of carrot. Plant Breed Rev 19:157–190

    Google Scholar 

  • Simon PW (2019) Economic and academic importance. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 1–8

    Chapter  Google Scholar 

  • Simon PW, Goldman IL (2007) Carrot. In: Singh RJ (ed) Genetic Resources, chromosome Engineering, and Crop Improvement Series, vol 3. CRC Press. Boca Raton, FL, pp 497–517

    Google Scholar 

  • Simon PW, Grzebelus D (2019) Carrot genetics and breeding. In: Geoffriau E, Simon PW (eds) Carrot and other cultivated Apiaceae, CABI, Oxford, UK, in press

    Google Scholar 

  • Simon PW, Matthews WC, Roberts PA (2000) Evidence for simply inherited dominant resistance to Meloidogyne javanica in carrot. Theor Appl Genet 100:735–742

    Article  Google Scholar 

  • Simon PW, Freeman RE, Vieira JV, Boiteux LS, Briard M, Nothnagel T, Michalik B, Kwon YS (2008) Carrot. In: Prohens J, Nuez F (eds) Handbook of Plant Breeding: Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae. Springer, New York, pp 327–357

    Google Scholar 

  • Simon PW, Geoffriau E, Ellison S, Iorizzo M (2019) Carrot carotenoid genetics and genomics. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Cham, Switzerland, pp 247–260

    Chapter  Google Scholar 

  • Simpson K, Fuentes P, Quiroz-Iturra LF, Flores-Ortiz C, Contreras R, Handford M, Stange C (2018) Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota. J Exp Bot 69:4113–4126. https://doi.org/10.1093/jxb/ery207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh NK, Handa AK, Hasegawa PM, Bressan RA (1985) Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiol 79:126–137. https://doi.org/10.1104/pp.79.1.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singsaas EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol 115:1413. https://doi.org/10.1104/pp.115.4.1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen JN, Jorgensen U, Kuhn BF (1997) Drought effects on the marketable and nutritional quality of carrots. J Sci Food Agri 74:379–391

    Article  CAS  Google Scholar 

  • Spooner DM (2019) Daucus: Taxonomy, phylogeny, distribution. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The Carrot Genome. Springer, Switzerland, pp 9–26

    Chapter  Google Scholar 

  • Sreenivasulu N, Sopory S, Kishor P (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13. https://doi.org/10.1016/j.gene.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  • Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Fat Soluble Vitam Old Mol Nov Prop 24:345–351. https://doi.org/10.1016/S0098-2997(03)00030-X

    Article  CAS  Google Scholar 

  • Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G, Chen J (2010) Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog Neurobiol 92:184–211. https://doi.org/10.1016/j.pneurobio.2010.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanyam K, Sailaja KV, Subramanyam K, Muralidhara Rao D, Lakshmidevi K (2010) Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell Tiss Org Cult105(2), 181–192. https://doi.org/10.1007/s11240-010-9850-1

    Article  CAS  Google Scholar 

  • Tan W, Meng Q wei, Brestic M, Olsovska K, Yang X (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168:2063–2071. https://doi.org/10.1016/j.jplph.2011.06.009

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+tolerance and Na+transport in higher plants. Ann Bot 91:503–527. https://doi.org/10.1093/aob/mcg058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner S, Ellison S, Senalik DA, Simon PW et al (2018) An automated, high-throughput image analysis pipeline enables genetic studies of shoot and root morphology in carrot (Daucus carota L.). Front Plant Sci 9:1703

    Google Scholar 

  • Turner SD, Maurizio PL, Valdar W, Yandell BS, Simon PW (2017) Dissecting the genetic architecture of shoot growth in carrot (Daucus carota L.) using a diallel mating design. Genes Genom Genet 8:411–426

    Google Scholar 

  • Vieira JV, Della Vecchia P, Ikuta H (1983) Cenoura ‘Brasilia’. Hort Bras 1:42

    Google Scholar 

  • Vivek BS, Simon PW (1999) Linkage relationshipsamong molecular markers and storage root traits ofcarrot (Daucus carota L. ssp. sativus). Theor ApplGenet 99:58–64

    CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011

    Article  Google Scholar 

  • Wang H, Ou C-G, Zhuang F-Y, Ma Z-G (2014) The dual role of phytoene synthase genes in carotenogenesis in carrot roots and leaves. Mol Breed 34:2065–2079. https://doi.org/10.1007/s11032-014-0163-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westphal L, Wricke G (1991) Genetic and linkage analysis of isozyme loci in Daucus carota L. Euphytica 56:259–267

    Article  CAS  Google Scholar 

  • Wohlfeiler J, Alessandro MS, Galmarini CR (2019) Multiallelic digenic control of vernalization requirement in carrot (Daucus carota L.). Euphytica 215:1–10

    Article  CAS  Google Scholar 

  • Xu Z-S, Tan HW, Wang F, Hou XL, Xiong AS (2014) CarrotDB: a genomic and transcriptomic database for carrot. Database (Oxford) 2014 doi:10.1093/database/bau096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Z-S, Feng K, Xiong A-S (2019) CRISPR/Cas9-mediated multiply targeted mutagenesis in orange and purple carrot plants. Mol Biotechnol 61:191–199

    Article  CAS  PubMed  Google Scholar 

  • Yau Y, Simon PW (2003) A 2.5-kb insert eliminates acid soluble invertase isozyme II transcript in carrot (Daucus carota L.) roots, causing high sucrose accumulation. Plant Mol Biol 53:151–162

    Article  CAS  PubMed  Google Scholar 

  • Yau YY, Santos K, Simon PW (2005) Molecular tagging and selection for sugar type in carrot roots with codominant, PCR-based markers. Mol Breed 16:1–10

    Article  CAS  Google Scholar 

  • Yeo A, Flowers T (1986) Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Aust J Plant Physiol 13:161–173. https://doi.org/10.1071/PP9860161

    Article  Google Scholar 

  • Yildiz M, Willis DK, Cavagnaro PF, Iorizzo M, Abak K, Simon PW (2013) Expression and mapping of anthocyaninbiosynthesis genes in carrot. Theor Appl Genet 126:1689–1702

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Marubodee R, Ogiso-Tanaka E, Iseki K, Isemura T, Takahashi Y, Muto C, Naito K, Kaga A, Okuno K, Ehara H, Tomooka N (2016) Salt tolerance in wild relatives of adzuki bean, Vigna angularis (Willd.) Ohwi et Ohashi. Genet Resour Crop Evol 63:627–637. https://doi.org/10.1007/s10722-015-0272-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp W. Simon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bolton, A., Klimek-Chodacka, M., Martin-Millar, E., Grzebelus, D., Simon, P.W. (2020). Genome-Assisted Improvement Strategies for Climate-Resilient Carrots. In: Kole, C. (eds) Genomic Designing of Climate-Smart Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-97415-6_6

Download citation

Publish with us

Policies and ethics