Skip to main content

Development and Finite Element Implementation of a Simple Constitutive Model to Address Superelasticity and Hysteresis of Nitinol

  • Conference paper
  • First Online:
Advances in Materials, Mechanical and Industrial Engineering (INCOM 2018)

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

Included in the following conference series:

  • 703 Accesses

Abstract

Nitinol shows superelasticity and clearly defined hysteresis that possesses close resemblance to biological components. This is attributed to stress-induced phase transformation of Nitinol. The present article proposes a new constitutive model based on a simple schematic arrangement of friction block, spring, and rigid walls to replicate this unique behavior of Nitinol. In addition to superelasticity, the strain hardening and viscoplasticity are thoroughly explored and also incorporated in the model. Results of simulation closely match with the experimental data obtained from uniaxial testing of Nitinol wire. This model can be readily used for any case of superelasticity either due to phase transformation or any other microstructural behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellouard, Y.: Shape memory alloys for microsystems: a review from a material research perspective. Mater. Sci. Eng. A 481–482, 582–589 (2008)

    Article  Google Scholar 

  2. Mahtabi, M., Shamsaei, N., Mitchell, M.: Fatigue of Nitinol: the state-of-the-art and ongoing challenges. J. Mech. Behav. Biomed. Mater. 50, 228–254 (2015)

    Article  Google Scholar 

  3. Plotino, G., Grande, N.M., Cordaro, M., Testarelli, L., Gambarini, G.: A review of cyclic fatigue testing of nickel-titanium rotary instruments. J. Endod. 35, 1469–1476 (2009)

    Article  Google Scholar 

  4. Jani, J.M., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014)

    Article  Google Scholar 

  5. Nayan, N., Buravalla, V., Ramamurty, U.: Effect of mechanical cycling on the stress–strain response of a martensitic Nitinol shape memory alloy. Mater. Sci. Eng. A 525, 60–67 (2009)

    Article  Google Scholar 

  6. Adharapurapu, R.R., Jiang, F., Bingert, F.J., Vecchio, S.K.: Influence of cold work and texture on the high-strain-rate response of Nitinol. Mater. Sci. Eng. A 527, 5255–5267 (2010)

    Article  Google Scholar 

  7. Sadiq, H., Wong, B.M., Al-Mahaidi, R., Zhao, L.X.: The effects of heat treatment on the recovery stresses of shape memory alloys. Smart Mater. Struct. 19, 1–7 (2010)

    Article  Google Scholar 

  8. Schlun, M., Zipse, A., Dreher, G., Rebelo, N.: Effects of cyclic loading on the uniaxial behavior of Nitinol. J. Mater. Eng. Perform. 20, 684–687 (2011)

    Article  Google Scholar 

  9. Halani, R.P., Kaya, I., Shin, C.Y., Karaca, E.H.: Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition. Mater. Sci. Eng. A 559, 836–843 (2013)

    Article  Google Scholar 

  10. Pelton, A., Dicello, J., Miyazaki, S.: Optimisation of processing and properties of medical grade Nitinol wire. Minim. Invasive Ther. Allied Technol. 9, 107–118 (2000)

    Article  Google Scholar 

  11. Mckelvey, A., Ritchie, R.: Fatigue-crack growth behavior in the superelastic and shape-memory alloy Nitinol. Metall. Mater. Trans. A 32a, 731–743 (2001)

    Article  Google Scholar 

  12. McNaneyM, J., Imbeni, V., Jung, Y., Papadopoulos, P., Ritchie, R.O.: An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading. Mech. Mater. 35, 969–986 (2003)

    Article  Google Scholar 

  13. Shishkovsky, I.: Hysteresis modeling of the porous Nitinol delivery system, designed and fabricated by SLS method. Phys. Procedia 39, 893–902 (2012)

    Article  Google Scholar 

  14. Duerig, T., Pelton, A., Stockel, D.: An overview of Nitinol medical applications. Mater. Sci. Eng., A 273–275, 149–160 (1999)

    Article  Google Scholar 

  15. Whitcher, F.D.: Simulation of in vivo loading conditions of Nitinol vascular stent structures. Comput. Struct. 64(5–6), 1005–1011 (1997)

    Article  Google Scholar 

  16. Souza, A.C., Mamiya, E.N., Zouain, N.: Three-dimensional model for solids undergoing stress-induced phase transformations. Eur. J. Mech. A/Solids 17, 789–806 (1998)

    Article  Google Scholar 

  17. Auricchio, F., Coda, A., Reali, A., Urbano, M.: SMA numerical modeling versus experimental results: parameter identification and model prediction capabilities. J. Mater. Eng. Perform. 18, 649–654 (2009)

    Article  Google Scholar 

  18. Jung, Y., Papadopoulos, P., Ritchie, R.O.: Constitutive modelling and numerical simulation of multivariant phase transformation in superelastic shape-memory alloys. Int. J. Numer. Meth. Eng. 60, 429–460 (2004)

    Article  MathSciNet  Google Scholar 

  19. Crisfield, M.A.: Nonlinear Finite Element Analysis for Solids and Structures, vol. 1, pp. 166–181. Wiley, Hoboken (2000)

    Google Scholar 

  20. Crisfield, M.A.: Nonlinear Finite Element Analysis for Solids and Structures, vol. 2, pp. 158–167. Wiley, Hoboken (2000)

    Google Scholar 

  21. Yaguchi, M., Takahashi, Y.: A viscoplastic constitutive model incorporating dynamic strain aging effect during cyclic deformation conditions. Int. J. Plast. 16, 241–262 (2000)

    Article  Google Scholar 

  22. Naghdi, P.M.: Constitutive restrictions for idealized elastic-viscoplastic materials. J. Appl. Mech. 51, 93–101 (1984)

    Article  Google Scholar 

  23. Kim, K.T., Cho, Y.H.: A temperature and strain rate dependent strain hardening law. Int. J. Press. Vessels Pip. 49, 327–337 (1992)

    Article  Google Scholar 

  24. Dowell, M., Jarratt, P.: The “Pegasus” method for computing the root of an equation. BIT 12, 503–508 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarmita Sinha .

Editor information

Editors and Affiliations

Appendix

Appendix

$$\varvec{A} := \frac{{{\text{d}}{\Delta }{\varvec{\upepsilon}}_{p}^{*} }}{{{\text{d}}\varvec{\sigma}_{\text{eff}} }} = \frac{3}{{2w_{1} x}}\left[ {\left( {x - 1} \right)\varvec{P} + \frac{3}{{2\varvec{x}^{2}\varvec{\sigma}_{\varvec{y}}^{0\,2} }}\varvec{P\sigma }_{\text{eff}}\varvec{\sigma}_{\text{eff}}^{\varvec{T}} \varvec{P}} \right];$$
$$\overline{\varvec{A}} = \frac{3}{{2x\sigma_{y}^{0} }}\left[ {\lambda \varvec{P} + \frac{1}{{x\left( {\sigma_{y}^{0} } \right)^{2} }}\left( {\frac{{\sigma_{y} }}{{w_{1} + \frac{{{\text{d}}\Delta \sigma_{v} }}{{{\text{d}}\lambda }}}} - \frac{\lambda }{x}} \right)\varvec{P\sigma }_{\text{eff}}\varvec{\sigma}_{\text{eff}}^{T} \varvec{P}} \right];$$
$$\varvec{B} := \frac{{{\text{d}}{\Delta }{\varvec{\upepsilon}}_{p} }}{{{\text{d}}{\Delta }{\varvec{\upepsilon}}_{p}^{*} }} = \frac{1}{y}\left[ {I - \frac{2}{{3y^{2} {\Delta }{\varvec{\upepsilon}}^{2} }}{\Delta }{\varvec{\upepsilon}}_{{p,{\text{eff}}}} {\Delta }{\varvec{\upepsilon}}_{{p,{\text{eff}}}}^{T} \overline{\varvec{P}} } \right];$$
$$\varvec{P} = \frac{1}{3}\left[ {\begin{array}{*{20}r} 2 \hfill & { - 1} \hfill & { - 1} \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ { - 1} \hfill & 2 \hfill & { - 1} \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ { - 1} \hfill & { - 1} \hfill & 2 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 6 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 6 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 6 \hfill \\ \end{array} } \right] ;$$
$$\overline{\varvec{P}} = \frac{1}{3}\left[ {\begin{array}{*{20}r} 2 \hfill & { - 1} \hfill & { - 1} \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ { - 1} \hfill & 2 \hfill & { - 1} \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ { - 1} \hfill & { - 1} \hfill & 2 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & {1.5} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {1.5} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {1.5} \hfill \\ \end{array} } \right] .$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patra, S., Sinha, S., Chanda, A. (2019). Development and Finite Element Implementation of a Simple Constitutive Model to Address Superelasticity and Hysteresis of Nitinol. In: Sahoo, P., Davim, J. (eds) Advances in Materials, Mechanical and Industrial Engineering. INCOM 2018. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-96968-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96968-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96967-1

  • Online ISBN: 978-3-319-96968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics