Skip to main content

Stresses and Deformation in Rotating Disk During Over-Speed

  • Conference paper
  • First Online:
Advances in Materials, Mechanical and Industrial Engineering (INCOM 2018)

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

Included in the following conference series:

  • 702 Accesses

Abstract

Disks of rotating machineries like gas turbine engines of aircraft are subjected to very high centrifugal stresses during extreme maneuvering conditions. These disks operate in nonlinear plastic region and may grow plastically during over-speed/over-load resulting in permanent deformation. As per certification criterion, disks should have acceptable permanent growth after over-speed. A closed-form solution is developed to predict permanent residual growth in rotating disk with variable thickness for linearly strain hardening material behavior using Tresca’s yield criteria and its associated flow rule. Results obtained using analytical solutions have been compared with finite element method (FEM) and experimental tests results for uniform thickness disks

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

E :

Young’s modulus of elasticity of disk material

\(f_{1} (\lambda ), f_{2} (\lambda )\) :

Function depending on disk material properties

h :

Disk thickness at radial location r (non-dimensional form \(\bar{h} = h/h_{0}\)) \(\bar{h}^{{\prime }} = {\text{d}}\bar{h}/{\text{d}}\bar{r}\)

\(h_{0}\) :

Disk thickness at the bore

H :

Profile parameter of hyperbola disk

\(H_{m}\) :

\(H_{m} = \eta \sigma_{0} /E\)

\(K_{1} , K_{2} ,K_{3} ,K_{4}\) :

Integration constant

p :

Profile parameter of hyperbola disk

r :

Radial location from axis of rotation (non-dimensional form \(\bar{r} = r/r_{2}\))

\(r_{1}\) :

Disk bore radius (non-dimensional form \(\bar{r}_{1} = r_{1} /r_{2}\))

\(r_{2}\) :

Disk rim radius (non-dimensional form \(\bar{r}_{2} = r_{2} /r_{2}\))

\(r_{\text{p}}\) :

Elastic plastic interface radius (non-dimensional form \(\bar{r}_{\text{p}} = r_{\text{p}} /r_{2}\))

u :

Radial displacement at r (non-dimensional form \(\bar{u} = uE/r_{2} \sigma_{0}\))

\(u^{\text{e}}\) :

Elastic displacement (non-dimensional \(\bar{u}^{\text{e}} = u^{\text{e}} E/r_{2} \sigma_{0}\))

\(u^{\text{p}}\) :

Plastic displacement (non-dimensional \(\bar{u}^{\text{p}} = u^{\text{e}} E/r_{2} \sigma_{0}\))

\(\varepsilon_{\theta } , \varepsilon_{\text{r}}\) :

Tangential and radial strain (non-dimensional form \(\bar{\varepsilon }_{\theta } = \varepsilon_{\theta } E/\sigma_{0} ,\bar{\varepsilon }_{\text{r}} = \varepsilon_{\text{r}} E/\sigma_{0}\))

\(\varepsilon_{\text{eq}}\) :

Equivalent plastic strain (non-dimensional form \(\bar{\varepsilon }_{\text{eq}} = \varepsilon_{\text{eq}} E/\sigma_{0}\))

\(\varepsilon_{\theta }^{\text{p}} ,\varepsilon_{\text{r}}^{\text{p}} ,\varepsilon_{\text{z}}^{\text{p}}\) :

Plastic tangential, radial and axial strain (non-dimensional form \(\bar{\varepsilon }_{\theta }^{\text{p}} = \varepsilon_{\theta }^{\text{p}} E/\sigma_{0} ,\bar{\varepsilon }_{\text{r}}^{\text{p}} = \varepsilon_{\text{r}}^{\text{p}} E/\sigma_{0} ,\bar{\varepsilon }_{\text{z}}^{\text{p}} = \varepsilon_{\text{z}}^{\text{p}} E/\sigma_{0}\))

\(\eta\) :

Hardening parameter

\(\lambda\) :

Constant depending on disk material properties

\(\vartheta\) :

Poisson’s ratio

\(\rho\) :

Density

\(\sigma_{0}\) :

Initial yield stress

\(\sigma_{\text{y}}\) :

Yield stress (non-dimensional form \(\bar{\sigma }_{\text{y}} = \sigma_{\text{y}} /\sigma_{0}\))

\(\sigma_{\theta } , \sigma_{\text{r}}\) :

Tangential and radial stress (normalized form \(\bar{\sigma }_{\theta } = \sigma_{\theta } /\upsigma_{0 } ,\bar{\sigma }_{\text{r}} = \sigma_{\text{r}} /\upsigma_{0}\))

\(\sigma_{\theta }^{\text{e}} , \sigma_{\text{r}}^{\text{e}}\) :

Tangential and radial stresses in elastic regime

\(\sigma_{\theta }^{\text{p}} , \sigma_{\text{r}}^{\text{p}}\) :

Tangential and radial stresses in plastic regime

\(\omega\) :

Angular velocity in radians per second (non-dimensional form \(\Omega = \sqrt {\rho \omega^{2} r_{2}^{2} /\sigma_{0} }\))

References

  1. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  2. Stodola, A.: Dampf und Gasturbinen, 6th edn. Julius Springer, Berlin (1924)

    Google Scholar 

  3. Reddy, T.Y., Srinath, H.: Elastic stresses in a rotating anisotropic annular disk of variable thickness and variable density. Int. J. Mech. Sci. 16, 85–89 (1974)

    Article  Google Scholar 

  4. Jain, R., Ramachandra, K., Simha, K.R.Y.: Rotating anisotropic disk of uniform strength. Int. J. Mech. Sci. 41, 639–648 (1999)

    Article  Google Scholar 

  5. Military Handbook. Department of Defence, USA: Mil-HDBK-5H (1998)

    Google Scholar 

  6. Chakrabarty, J.: Theory of Plasticity. McGraw-Hill, New York (1987)

    Google Scholar 

  7. Johnson, W., Mellor, P.B.: Engineering Plasticity. Ellis Horwood, Chichester, UK (1983)

    Google Scholar 

  8. Gamer, U.: Tresca’s yield condition and the rotating disk. J. Appl. Mech. 50:676–678 (1983)

    Article  Google Scholar 

  9. Eraslan, A.N., Argeso, H.: Limit angular velocities of variable thickness rotating disks. Int. J. Solids Struct. 39, 3109–3130 (2002)

    Article  Google Scholar 

  10. Ma, G., Hao, H., Miyamoto, Y.: Limiting angular velocity disc with unified yield criterion. Int. J. Mech. Sci. 43, 1137–1153 (2001)

    Article  Google Scholar 

  11. Güven, U.: Elastic-plastic stresses in a rotating annular disk of variable thickness and variable density. Int. J. Mech. Sci. 34, 133–138 (1992)

    Article  Google Scholar 

  12. Eraslan, A.N.: Elastic–plastic deformations of rotating variable thickness annular disks with free, pressurized and radially constrained boundary conditions. Int. J. Mech. Sci. 45, 643–667 (2003)

    Article  Google Scholar 

  13. Eraslan, A.N.: Elastoplastic deformations of rotating parabolic solid disks using Tresca’s yield criterion. Eur. J. Mech. A Solids 22, 861–874 (2003)

    Article  Google Scholar 

  14. Rees, D.W.A.: The Mechanics of Solids and Structures, 1st edn. McGraw-Hill, New York (1990)

    Google Scholar 

  15. You, L.H., Long, S.Y., Zhang, J.J.: Perturbation solution of rotating solid disks with non-linear strain hardening. Mech. Res. Commun. 24, 649–658 (1997)

    Article  Google Scholar 

  16. You, L.H., Zhang, J.J.: Elastic-plastic stresses in a rotating solid disk. Int. J. Mech. Sci. 41, 269–282 (1999)

    Article  Google Scholar 

  17. You, L.H., Tang, Y.Y., Zhang, J.J., Zhen, C.Y.: Numerical analysis of elastic-plastic rotating disks with arbitrary variable thickness and density. Int. J. Solids Struct. 37, 7809–7820 (2000)

    Article  Google Scholar 

  18. Bhowmick, S., Misra, D., Nath, K.: Variational formulation based analysis on growth of yield front in high speed rotating solid disks. Int. J. Eng. Sci. Technol. 2, 200–219 (2010)

    Article  Google Scholar 

  19. Wilterdink, P.I., Holms, A.G., Manson, S.S.: A theoretical and experimental investigation of the influence of temperature gradient on the deformation and burst speeds of rotating disks. Lewis Flight Propulsion Laboratory Cleveland, Ohio, Technical Note 2803 (1952)

    Google Scholar 

  20. Zienkiewicz, O.C.: The Finite Element Method in Engineering Science. McGraw-Hill, London (1971)

    MATH  Google Scholar 

  21. Ayyappan, C., Rajesh, K., Ramesh, P., Jain, R.: Experimental and numerical studies to predict residual growth in an aero-engine compressor disk after over-speed. In: Procedia Engineering, 6th International Conference on Creep Fatigue and Creep-Fatigue Interaction, vol. 55, pp. 625–30 (2013)

    Google Scholar 

  22. Karlsson, H.: ABAQUS/Standard User’s Manual, vol. I & II, Version 5.4. SorensenInc. Pawtucket, Rhode Island, USA (1994)

    Google Scholar 

  23. Hsu, Y.C., Forman, R.G.: Elastic-plastic analysis of an infinite sheet having a circular hole under pressure. ASME J. Appl. Mech. 42, 347–352 (1975)

    Article  Google Scholar 

  24. Wanlin, G.: Elastic-plastic analysis of a finite sheet with a cold-worked hole. Eng. Fract. Mech. 46, 465–472 (1993)

    Article  Google Scholar 

  25. Callioğlu, H., Topcu, M., Tarakcilar, A.R.: Elastic-plastic stress analysis of an orthotropic rotating disc. Int. J. Mech. Sci. 48, 985–990 (2006)

    Article  Google Scholar 

  26. Robinson, E.L., Schenectady, N.Y.: Bursting tests of steam turbine disk wheels. Trans. ASME 66, 373–386 (1944)

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director, GTRE Dr. C. P. Ramanarayan, Outstanding Scientist for allowing this paper to publish in international referred journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, R., Jain, R. (2019). Stresses and Deformation in Rotating Disk During Over-Speed. In: Sahoo, P., Davim, J. (eds) Advances in Materials, Mechanical and Industrial Engineering. INCOM 2018. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-96968-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96968-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96967-1

  • Online ISBN: 978-3-319-96968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics