Skip to main content

MHD Convection with Heat Generation in a Porous Cavity

  • Conference paper
  • First Online:
Book cover Advances in Materials, Mechanical and Industrial Engineering (INCOM 2018)

Abstract

The present study deals with the magnetic-field-affected heat generation–absorption undergoing natural convection in a differentially heated cavity packed with porous media. A two-dimensional porous cavity with adiabatic top and bottom is investigated numerically considering its left wall heated isothermally and right wall maintained at ambient temperature. The solution of the governing equations and subsequent post-processing is conducted using finite volume-based in-house CFD code. The flow through the porous medium has been modeled using Brinkman–Forchheimer–Darcy model (BFDM). The results obtained from the wide range of parameters are examined graphically using streamlines, isotherms, and average Nusselt number (Nu) plots and discussed to know the effects of different flow parameters like modified Rayleigh number (Ram = 1–1000), Darcy number (Da = 10−3 − 10−6), porosity (ε = 0.1 − 1.0), Hartmann number (Ha = 10 − 100) along with its inclination angle (γ = 0 − 180°), in the presence of heat generation and absorption. It is found that as the magnetic field strength increases, heat transfer rate decreases substantially, and it is further affected by heat generation–absorption parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

B :

Uniform magnetic field (tesla)

Da :

Darcy number

G :

Ratio of heat generation–absorption

H :

Height of the cavity/length scale, m

Ha :

Hartmann number

\(K\) :

Permeability of porous medium, m2

\(L\) :

Length of the cavity, m

\(Nu\) :

Average Nusselt number

\(p\) :

Pressure, Pa

\(P\) :

Dimensionless pressure

\(Pr\) :

Prandtl number

\(Ra\) :

External Rayleigh number

\(Ra_{\text{I}}\) :

Internal Rayleigh number

\(Ra_{\text{m}}\) :

Modified Darcy–Rayleigh number

\(T\) :

Temperature, K

\(g\) :

Velocity components, m/s

\(U,V\) :

Dimensionless velocity components

\(x,y\) :

Cartesian coordinates, m

\(X,Y\) :

Dimensionless coordinates

\(\alpha\) :

Thermal diffusivity, m2/s

\(\beta\) :

Thermal expansion coefficient, K−1

\(\gamma\) :

Inclination angle of the magnetic field

\(\theta\) :

Dimensionless temperature

ε :

Porosity

\(\upsilon\) :

Kinematic viscosity, m2/s

\(\rho\) :

Density, kg/m3

\(\kappa\) :

Electrical conductivity (μS cm−1)

\(\psi\) :

Dimensionless stream function

\({\text{c}},{\text{h}}\) :

Cooling, heating

References

  1. Sheikholeslami, M.: Numerical simulation of magnetic nanofluid natural convection in porous media. Phy. Lett. A. 381, 494–503 (2017)

    Article  Google Scholar 

  2. Oztop, H., Bilgen, E.: Natural convection in differentially heated and partially. Int. J. Heat Fluid Flow. 27, 466–475 (2016)

    Article  Google Scholar 

  3. Sheremet, M.A., Pop, I.: Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transf. 79, 137–145 (2014)

    Article  Google Scholar 

  4. El-Amin, M.F.: Combined effect of internal heat generation and magnetic field. J. Magn. Magn. Mater. 270, 130–135 (2004)

    Article  Google Scholar 

  5. Ghasemi, B., Aminossadati, S.M., Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Ther. Sci. 50, 1748–1756 (2011)

    Article  Google Scholar 

  6. Sivaraj, C., Sheremet, M.A.: MHD natural convection in an inclined square porous cavity with a heat conducting solid block. J. Magn. Magn. Mater. 426, 351–360 (2017)

    Article  Google Scholar 

  7. Selimefendigil, F., Öztop, H.F.: Natural convection in a flexible sided triangular cavity with internal heat generation under the effect of inclined magnetic field. J. Magn. Magn. Mater. 417, 327–337 (2016)

    Article  Google Scholar 

  8. Bondareva, N.S., Sheremet, M.A.: Effect of inclined magnetic field on natural convection melting in a square cavity witha local heatsource. J. Magn. Magn. Mater. 419, 476–484 (2017)

    Article  Google Scholar 

  9. Mahmoudi, A., Mejri, I., Abbassi, M.A., Omri, A.: Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution. Powder. Technol. 256, 257–271 (2014)

    Article  Google Scholar 

  10. Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D.: Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy 60, 501–510 (2013)

    Article  Google Scholar 

  11. Sheikholeslami, M., Ganji, D.D.: Heat transfer of Cu–water nanofluid flow between parallel plates. Powder. Technol. 235, 873–879 (2013)

    Article  Google Scholar 

  12. Sheikholeslami, M., Ganji, D.D., Ashorynejad, H.R.: Investigation of squeezing unsteady nanofluid flow using ADM. Powder. Technol. 239, 259–265 (2013)

    Article  Google Scholar 

  13. Kefayati, G.H.R.: Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution. Powder. Technol. 243, 171–183 (2013)

    Article  Google Scholar 

  14. Kefayati, G.H.R.: Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using lattice Boltzmann method. Int. Commun. Heat. Mass. Transf. 40, 67–77 (2013)

    Article  Google Scholar 

  15. Mliki, B., Abbassi, M.A., Omri, A., Zeghmati, B.: Augmentation of natural convective heat transfer in linearly heated cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Powder. Technol. 284, 312–325 (2015)

    Article  Google Scholar 

  16. Malik, S., Nayak, A.K.: MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating. Int. J. Heat. Mass. Transf. 111, 329–345 (2017)

    Article  Google Scholar 

  17. Mojumder, S., Rabbi, K.M., Saha, S., Hasan, M.N., Saha, S.C.: Magnetic field effect on natural convection and entropy generation in a half-moon shaped cavity with semi-circular bottom heater having different ferrofluid inside. J. Magn. Magn. Mater. 407, 412–424 (2016)

    Article  Google Scholar 

  18. Bondareva, N.S., Sheremet, M.A., Pop, I.: Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid. Int. J. Numer. Methods. Heat Fluid Flow. 25, 1924–1946 (2015)

    Article  Google Scholar 

  19. Sheremet, M.A., Pop, I., Rosca, N.C.: Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model. J. Taiwan Inst. Chem. Eng. 61, 211–222 (2016)

    Article  Google Scholar 

  20. Karimipour, A., Taghipour, A., Malvandi, A.: Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux. J. Magn. Magn. Mater. 419, 420–428 (2016)

    Article  Google Scholar 

  21. Malvandi, A.: Film boiling of magnetic nanofluids (MNFs) over a vertical plate in presence of a uniform variable-directional magnetic field. J. Magn. Magn. Mater. 406, 95–102 (2016)

    Article  Google Scholar 

  22. Malvandi, A., Safaei, M.R., Kaffash, M.H., Ganji, D.D.: MHD mixed convection in a vertical annulus filled with Al2O3–water nanofluid considering nanoparticle migration. J. Magn. Magn. Mater. 382, 296–306 (2015)

    Article  Google Scholar 

  23. Rashad, A.M., Armaghani, T., Chamkha, A.J., Mansour, M.A.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chinese J. Phy. 56, 193–211 (2018)

    Article  Google Scholar 

  24. Gibanov, N.S., Sheremet, M.A., Oztop, H.A., Al-Salem, K.: MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. J. Magn. Magn. Mater. 452, 193–204 (2018)

    Article  Google Scholar 

  25. Yu, P.X., Qiu, J.X., Qin, Q., Tian, Z.F.: Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int. J. Heat Mass Transf. 67, 1131–1144 (2013)

    Article  Google Scholar 

  26. Grosan, T., Revnic, C., Pop, I., Ingham, D.B.: Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium. Int. J. Heat Mass Transf. 52, 1525–1533 (2009)

    Article  Google Scholar 

  27. Revnic, C., Grosan, T., Pop, I., Ingham, D.B.: Magnetic field effect on the unsteady free convection flow in a square cavity filled with a porous medium with a constant heat generation. Int. J. Heat Mass Transf. 54, 1734–1742 (2011)

    Article  Google Scholar 

  28. Jiang, C., Feng, W., Zhong, H., Zeng, J., Zhu, Q.: Effects of a magnetic quadrupole field on thermomagnetic convection of air in a porous square enclosure. J. Magn. Magn. Mater. 357, 53–60 (2014)

    Article  Google Scholar 

  29. Nayak, A.K., Malik, S., Venkateshwarlu, K., Jena, P.K.: Magneto-convection and its effect on partially active thermal zones in a porous square domain. Int. J. Heat Mass Transf. 95, 913–926 (2016)

    Article  Google Scholar 

  30. Nkurikiyimfura, I., Wang, Y., Pan, Z.: Heat transfer enhancement by magnetic nanofluids—a review, Renew. Sustain Energy Rev. 21, 548–561 (2013)

    Article  Google Scholar 

  31. Sarkar, S., Ganguly, S., Biswas, G.: Buoyancy driven convection of nanofluids in an infinitely long channel under the effect of a magnetic field. Int. J. Heat Mass Transf. 71, 328–340 (2014)

    Article  Google Scholar 

  32. Chamkha, A.: Hydromagnetic combined convection flow in a vertical lid-driven cavity enclosure with internal heat generation or absorption. Numer. Heat Transf. Part A 41, 529–546 (2002)

    Article  Google Scholar 

  33. Sheikholeslami, M., Hayat, T., Alsaedi, A.: MHD free convection of Al2O3-water nanofluid considering thermal radiation: a numerical study. Int. J. Heat Mass Transf. 96, 513–524 (2016)

    Article  Google Scholar 

  34. Sheikholeslami, M., Rashidi, M., Hayat, T., Ganji, D.: Free convection of magnetic nanofluid considering mfd viscosity effect. J. Mol. Liq. 218, 393–399 (2016)

    Article  Google Scholar 

  35. Selimefendigil, F., Oztop, H.F.: MHD mixed convection and entropy generation of power law fluids in a cavity with a partial heater under the effect of a rotating cylinder. Int. J. Heat Mass Transf. 98, 40–51 (2016)

    Article  Google Scholar 

  36. Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, Berlin, Germany (2006)

    MATH  Google Scholar 

  37. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Taylor and Francis, New York, Hemisphere (1980)

    Google Scholar 

  38. Datta, P., Mahapatra, P.S., Ghosh, K., Manna, N.K., Sen, S.: Heat transfer and entropy generation in a porous square enclosure in presence of an adiabatic block. Transp. Porous Media 111, 305–329 (2016)

    Article  MathSciNet  Google Scholar 

  39. Ghasemi, B., Aminossadati, S.M., Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Ther. Sci. 50, 1748–1756 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyodeep Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mukherjee, S., Biswas, N., Manna, N.K. (2019). MHD Convection with Heat Generation in a Porous Cavity. In: Sahoo, P., Davim, J. (eds) Advances in Materials, Mechanical and Industrial Engineering. INCOM 2018. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-96968-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96968-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96967-1

  • Online ISBN: 978-3-319-96968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics