Skip to main content

Enhanced Thermal and Mechanical Performance of Functionalized Graphene Epoxy Nanocomposites: Effect of Processing Conditions, Different Grades and Loading of Graphene

  • Conference paper
  • First Online:
Advances in Materials, Mechanical and Industrial Engineering (INCOM 2018)

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

Included in the following conference series:

Abstract

Graphene nanoplatelets (GnPs) belong to a category of recently innovated inexpensive materials that comprises of a small pile of graphite layers that has often been employed to augment the tensile strength of composites. In this work, acid modified Polyacroyl chloride (PACl)-functionalized GnP has been incorporated in epoxy (Epon 828) matrix and the effect of solution processing on the thermal, viscoelastic and mechanical properties of the nanocomposites was investigated.  As a result of the acid treatment, hydroxl groups were incorporated on to the GnP backbone which in turn served as a site for covalent bonding with the acyl chloride groups of PACl. The unreacted acyl chloride groups bonded to the epoxy in the nanocomposite. The nanocomposites were prepared in the presence of acetone as a solvent (solvent processed) and also in the absence of solvent. The fractured surfaces of the prepared nanocomposites upon tensile testing were examined using scanning electron microscopy (SEM) which revealed the strong interfacial bonding between the functionalized GnPs and epoxy matrix. The thermal and viscoelastic properties of the nanocomposites were characterized by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. It could be concluded that the mechanical and thermal properties of epoxy nanocomposites were improved to an appreciable extent upon the incorporation of functionalized GnPs and the processing conditions played a pivotal role in controlling the aforementioned properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim, A.K., MacDonald, A.H.: Graphene: exploring carbon flatland. Phys. Today 60, 35–41 (2007)

    Google Scholar 

  2. Stoller, M.D., Park, S.J., Zhu, Y.W., An, J.H., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  Google Scholar 

  3. Chabot, V., Higgins, D., Yu, A., Xiao, X., Chen, Z., Zhang, J.: A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7(5), 1564–1596 (2014)

    Article  Google Scholar 

  4. Cai, W., Zhu, Y., Li, X., Piner, R.D., Ruoff, R.S.: Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 95(12), 123115 (2009)

    Article  Google Scholar 

  5. Wang, G., Shen, X., Yao, J., Park, J.: Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47 (8), 2049–2053 (2009)

    Article  Google Scholar 

  6. Bose, S., Basu, S., Das, A., Rahman, M., Drzal, L.T.: Fabrication of a sulfonated aramid-graphene nanoplatelet composite paper and its performance as a supercapacitor electrode. J. Appl. Polym. Sci. 134(29), 45099 (2017)

    Article  Google Scholar 

  7. Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., Li, C.M.: Layered graphene/quantum dots for photovoltaic devices. Angew. Chem., Int. Ed. Engl. 49(17), 3014–3017 (2010)

    Article  Google Scholar 

  8. Eswaraiah, V., Sankaranarayanan, V., Ramaprabhu, S.: Graphene-based engine oil nanofluids for tribological applications. ACS Appl. Mater. Interfaces. 3(11), 4221–4227 (2011)

    Article  Google Scholar 

  9. Bose, S., Das, A., Basu, S., Drzal, L.T.: Edge stitching of graphene nanoplatelets (GnPs) and their effectiveness as a filler for epoxy nanocomposites. ChemistrySelect 2(20), 5769–5774 (2017)

    Article  Google Scholar 

  10. Bose, S., Das, A., Basu, S., Drzal, L.T.: Covalent functionalization of graphene using polyacryloyl chloride and performance of functionalized graphene-epoxy nanocomposite. Polym. Compos. 298, 339 (2017)

    Google Scholar 

  11. Liu, Z., Shen, D., Yu, J., Dai, W., Li, C., Du, S., Jiang, N., Li, H., Lin, C.T.: Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites. RSC Advances 6, 22364–22369 (2016)

    Article  Google Scholar 

  12. Zeng, C., Lu, S., Song, L., Xiao, X., Gao, J., Pan, L., He, Z., Yu, J.: Enhanced thermal properties in a hybrid graphene-alumina filler for epoxy composites. RSC Advances 5, 35773–35782 (2015)

    Article  Google Scholar 

  13. Yao, Y., Wang, J., Lu, H., Xu, B., Fu, Y., Liu, Y., Leng, J.: Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties. Smart Mater. Struct. 25, 015021 (2016)

    Article  Google Scholar 

  14. Wajid, A.S., Ahmed, H.S., Das, S., Irin, F., Jankowski, A.F., Green, M.J.: High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol. Mater. Eng. 298, 339–347 (2013)

    Article  Google Scholar 

  15. Balakrishnan, S., Start, P.R., Raghavan, D., Hudson, S.D.: The influence of clay and elastomer concentration on the morphology and fracture energy of preformed acrylic rubber dispersed clay filled epoxy nanocomposites. Polymer 46, 11255–11262 (2005)

    Article  Google Scholar 

  16. Zhang, Y., Wang, Y., Yu, J., Chen, L., Zhu, J., Hu, Z.: Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole. Polymer 55, 4990–5000 (2014)

    Article  Google Scholar 

  17. Mittal, V.: Functional polymer nanocomposites with graphene: a review. Macromol. Mater. Eng. 299, 906–931 (2014)

    Article  Google Scholar 

  18. Sofer, Z., Simek, P., Pumera, M.: Complex organic molecules are released during thermal reduction of graphite oxides. Phys. Chem. Chem. Phys. 15, 9257–9264 (2013)

    Article  Google Scholar 

  19. Cheng, M., Yang, R., Zhang, L., Shi, Z., Yang, W., WangD, Xie G., Shi, D., Zhang, G.: Restoration of graphene from graphene oxide by defect repair. Carbon 50, 2581–2587 (2012)

    Article  Google Scholar 

  20. Yang, K., Gu, M., Guo, Y., Pan, X., Mu, G.: Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47, 1723–1737 (2009)

    Article  Google Scholar 

  21. Kim, M.G., Moon, J.B., Kim, C.G.: Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature. Compos. A Appl. Sci. Manuf. 43, 1620–1627 (2012)

    Article  Google Scholar 

  22. Rahman, M.M., Hosur, M., Zainuddin, S., Jajam, K.C., Tippur, H.V., Jeelani, S.: Mechanical characterization of epoxy composites modified with reactive polyol diluent and randomly-oriented amino-functionalized MWCNTs. Polym. Testing 31, 1083–1093 (2012)

    Article  Google Scholar 

  23. Damian, C.M., Garea, S.A., Vasile, E., Iovu, H.: Covalent and non-covalent functionalized MWCNTs for improved thermo-mechanical properties of epoxy composites. Compos. B Eng. 43, 3507–3515 (2012)

    Article  Google Scholar 

  24. Zou, W., Du, Z.J., Liu, Y.X., Yang, X., Li, H.Q., Zhang, C.: Functionalization of MWNTs using polyacryloyl chloride and the properties of CNT–epoxy matrix nanocomposites. Compos. Sci. Technol. 68, 3259–3264 (2008)

    Article  Google Scholar 

  25. Ho, S.S., Park, K.H., Kim, B.H., Choi, Y.W., Jun, G.H., Lee, D.J., Kong, B.S., Paik, K.W., Jeon,S.: Enhanced thermal conductivity of epoxy–graphene composites by using non‐oxidized graphene flakes with non‐covalent functionalization. Adv. Mater. 25, 732–737 (2013)

    Google Scholar 

  26. Lee, J.K., Song, S., Kim, B.: Functionalized graphene sheets-epoxy based nanocomposite for cryotank composite application. Polym. Compos. 33, 1263–1273 (2012)

    Article  Google Scholar 

  27. Jin, F.L., Ma, C.J., Park, S.J.: Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater. Sci. Eng., A 528, 8517–8522 (2011)

    Article  Google Scholar 

  28. Nadler, M., Werner, J., Mahrholz, T., Riedel, U., Hufenbach, W.: Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Compos. A Appl. Sci. Manuf. 40, 932–937 (2009)

    Article  Google Scholar 

  29. Geng, Y., Liu, M.Y., Li, J., Shi, X.M., Kim, J.K.: Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos. A Appl. Sci. Manuf. 39, 1876–1883 (2008)

    Article  Google Scholar 

  30. Shen, J., Huang, W., Wu, L., Hu, Y., Ye, M.: Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Compos. A Appl. Sci. Manuf. 38(5), 1331–1336 (2007)

    Article  Google Scholar 

  31. Kim, J.A., Seong, D.G., Kang, T.J., Youn, J.R.: Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44, 1898–1905 (2006)

    Article  Google Scholar 

  32. Zhang, Y., Ren, L., Wang, S., Marathe, A., Chaudhuri, J., Li, G.: Functionalization of graphene sheets through fullerene attachment. J. Mater. Chem. 21, 5386–5391 (2011)

    Article  Google Scholar 

  33. Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006)

    Article  Google Scholar 

  34. Worsley, K.A., Ramesh, P., Mandal, S.K., Niyogi, S., Itkis, M.E., Haddon, R.C.: Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445, 51–56 (2007)

    Article  Google Scholar 

  35. Zhang, Y., Ren, L., Wang, S., Marathe, A., Chaudhuri, J., Li, G.: Functionalization of graphene sheets through fullerene attachment. J. Mater. Chem. 21, 5386–5391 (2011)

    Article  Google Scholar 

  36. Salavagione, H.J., Gomez, M.A., Martinez, G.: Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules 42, 6331–6334 (2009)

    Article  Google Scholar 

  37. MohammadiA, Peighambardoust S.J., Entezami, A.A., Arsalani, N.: High performance of covalently grafted poly (o-methoxyaniline) nanocomposite in the presence of amine-functionalized graphene oxide sheets (POMA/f-GO) for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 28, 5776–5787 (2017)

    Google Scholar 

  38. Sulleiro, M.V., Quiroga, S., Peña, D., Pérez, D., Guitian, E., Criado, A., Prato, M.: Microwave-induced covalent functionalization of few-layer graphene with arynes under solvent-free conditions. Chem. Commun. 54, 2086–2089 (2018)

    Article  Google Scholar 

  39. Criado, A., Melchionna, M., Marchesan, S., Prato, M.: The covalent functionalization of graphene on substrates. Angew.Chem. Int. Ed. 54, 10734–10750 (2015)

    Article  Google Scholar 

  40. Naebe, M., Wang, J., Amini, A., Khayyam, H., Hammed, N., Li, L.H., Chen, Y., Fox, B.: Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci. Rep. 4, 4375 (2014)

    Article  Google Scholar 

  41. Bose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H.: Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid. Nanotechnology 22, 405603 (2011)

    Article  Google Scholar 

  42. Bose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H.: Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J. Mater. Chem. 22, 9696–9703 (2012)

    Article  Google Scholar 

  43. Park, S., Lee, K.S., Bozoklu, G., Cai, W., Nguyen, S.T., Ruoff, R.S.: Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)

    Article  Google Scholar 

  44. Ahmadi-Moghadam, B., Sharafimasooleh, M., Shadlou, S., Taheri, F.: Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater. Des. 66, 142–149 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saswata Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bose, S., Das, A., Ghosh, A. (2019). Enhanced Thermal and Mechanical Performance of Functionalized Graphene Epoxy Nanocomposites: Effect of Processing Conditions, Different Grades and Loading of Graphene. In: Sahoo, P., Davim, J. (eds) Advances in Materials, Mechanical and Industrial Engineering. INCOM 2018. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-96968-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96968-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96967-1

  • Online ISBN: 978-3-319-96968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics