Skip to main content

Nonlinear Static Analysis and Superharmonic Influence on Nonlinear Forced Vibration of Timoshenko Beams

  • Conference paper
  • First Online:
Advances in Materials, Mechanical and Industrial Engineering (INCOM 2018)

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

Included in the following conference series:

  • 685 Accesses

Abstract

In the present work, static analysis and subsequently superharmonic influence on the nonlinear dynamic behavior of externally excited thick beams are investigated. Energy equations are derived considering Timoshenko beam theory. For the static analysis, classical Ritz method is followed. Nonlinear load–deflection response is obtained considering various geometric parameters such as length-to-depth ratio and load application points. For the vibration analysis, differential equations are obtained considering the Lagrange’s equation. Subsequently, harmonic balance method is employed for multi-DOF systems, which reduce the differential equations into nonlinear set of algebraic equation. These equations are tackled by enforcing an iterative scheme based on modified direct substitution method. Simple harmonic assumption although provides a very good prediction for small amplitude vibration problem. However, it is inadequate for the system having large amplitude vibration. It is shown that for accurate solution higher-order harmonics must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A j :

Temporal coordinates

B j :

Temporal coordinates

b :

Width of beam

C j :

Temporal coordinates

E :

Young’s modulus

F :

Amplitude of loading

h :

Depth of beam

K1, K2, K3, K4:

Stiffness parameters

k3, k4:

Stiffness parameter (dimensionless)

L :

Length of beam

M1, M2, M3:

Inertial parameters

m 3 :

Inertial parameter (dimensionless)

N :

Number of polynomial terms

T * :

Kinetic energy

T ** :

Kinetic energy (dimensionless)

U :

Longitudinal displacement

U * :

Potential energy

U ** :

Potential energy (dimensionless)

u :

Axial displacement (dimensionless)

W :

Transverse displacement

w :

Transverse displacement (dimensionless)

x f :

Load application point

ν :

Poisson’s ratio (dimensionless)

ξ :

Normalized axial coordinate

ξ f :

Xf/L

ρ :

Mass density

Ф:

Polynomial functions

Ψ:

Rotational displacement

ψ :

Normalized rotational displacement

Ω:

Frequency of excitation

ω :

Normalized frequency

References

  1. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  2. Meirovitch, L.: Methods of Analytical Dynamics. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  3. Noor, A.K., Peters, J.M.: Reduced basis technique for nonlinear analysis of structures. AIAA J. 18, 455–462 (1980)

    Article  Google Scholar 

  4. Desai, Y.M., Popplewell, N., Shah, A.H., Buragohain, D.N.: Geometric nonlinear static analysis of cable supported structures. Comput. Struct. 29, 1001–1009 (1988)

    Article  Google Scholar 

  5. Bathe, K.J., Bolourchi, S.: Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Meth. Eng. 14, 961–986 (1979)

    Article  Google Scholar 

  6. Mata, P., Oller, S., Barbat, A.H.: Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput. Meth. Appl. Mech. Eng. 196, 4458–4478 (2007)

    Article  MathSciNet  Google Scholar 

  7. Newmark, N.M.: A method of computation for structural dynamics. ASCE Eng. Mech. Div. 85, 67–94 (1959)

    Google Scholar 

  8. Eisley, J.G.: Nonlinear vibration of beams and rectangular plates. Zeitschrift für angewandte Mathematik und Physik ZAMP 15, 167–175 (1964)

    Article  MathSciNet  Google Scholar 

  9. Chu, H., Herrmann, G.: Influence of large amplitudes on free flexural vibrations of rectangular elastic plates. ASME J. Appl. Mech. 23, 532–540 (1956)

    MathSciNet  MATH  Google Scholar 

  10. Yamaki, N.: Influence of large amplitudes on flexural vibrations of elastic plates. J. Appl. Math. Mech. 41, 501–510 (1961)

    MathSciNet  MATH  Google Scholar 

  11. Hsu, C.S.: On the application of elliptic functions in nonlinear forced oscillations. Q. Appl. Math. 17, 393–407 (1960)

    Article  Google Scholar 

  12. Evensen, D.A.: Nonlinear vibrations of beams with various boundary conditions. AIAA J. 6, 370–372 (1968)

    Article  Google Scholar 

  13. Tseng, W.Y., Dugundji, J.: Nonlinear vibrations of a beam under harmonic excitation. J. Appl. Mech. 37, 292–297 (1970)

    Article  Google Scholar 

  14. Tseng, W.Y., Dugundji, J.: Nonlinear vibrations of a buckled beam under harmonic excitation. J. Appl. Mech. 38, 467–476 (1971)

    Article  Google Scholar 

  15. Bennett, J.A., Eisley, J.G.: A multiple degree-of-freedom approach to nonlinear beam vibrations. AIAA J. 8, 734–739 (1970)

    Article  Google Scholar 

  16. Mei, C.: Nonlinear vibration of beams by matrix displacement method. AIAA J. 10, 355–357 (1972)

    Article  Google Scholar 

  17. Stupnicka, W.: A study of main and secondary resonances in nonlinear multi-degree-of-freedom vibrating systems. Int. J. Nonlinear Mech. 10, 289–304 (1975)

    Article  Google Scholar 

  18. Stupnicka, W.: The generalised harmonic balance method for determining the combination resonance in the parametric dynamic systems. J. Sound Vib. 58, 347–361 (1978)

    Article  Google Scholar 

  19. Stupnicka, W.: Nonlinear normal modes and the generalised Ritz method in the problems of vibrations of nonlinear elastic continuous systems. Int. J. Nonlinear Mech. 18, 149–165 (1983)

    Article  Google Scholar 

  20. Rao, G., Raju, K.: Finite element formulation for the large amplitude free vibrations of beams and orthotropic plates. J. Comput. Struct. 6, 169–172 (1976)

    Article  Google Scholar 

  21. Lau, S.L., Cheung, Y.K.: Amplitude incremental variational principle for nonlinear vibration of elastic systems. J. Appl. Mech. 48, 59–964 (1981)

    MATH  Google Scholar 

  22. Lau, S.L., Cheung, Y.K., Wu, S.Y.: Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems. J. Appl. Mech. 50, 871–876 (1983)

    Article  MathSciNet  Google Scholar 

  23. Bennouna, M.M.K., White, R.G.: The effects of large vibration amplitudes on the fundamental mode shape of a clamped-clamped uniform beam. J. Sound Vib. 96, 309–331 (1984)

    Article  Google Scholar 

  24. Bennouna, M.M.K., White, R.G.: The effects of large vibration amplitudes on the dynamic strain response of a clamped-clamped beam with consideration of fatigue life. J. Sound Vib. 96, 281–308 (1984)

    Article  Google Scholar 

  25. Benamar, R., Bennouna, M.M.K., White, R.G.: The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures. Part I: simply supported and clamped-clamped beams. J. Sound Vib. 149, 179–195 (1991)

    Article  Google Scholar 

  26. Benamar, R., Bennouna, M.M.K., White, R.G.: The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, part III: fully clamped rectangular isotropic plates-measurements of the mode shape amplitude dependence and the spatial distribution of harmonic distortion. J. Sound Vib. 175, 377–424 (1994)

    Article  Google Scholar 

  27. Azrar, L., Benamar, R., White, R.G.: Semi-analytical approach to the nonlinear dynamic response problem of S–S and C–C beams at large vibration amplitudes, part I: general theory and application to the single mode approach to free and forced vibration analysis. J. Sound Vib. 224(2), 183–207 (1999)

    Article  Google Scholar 

  28. El Kadiri, M., Benamar, R., White, R.G.: The non-linear free vibration of fully clamped rectangular plates: second nonlinear mode for various plate aspect ratios. J. Sound Vib. 228, 333–358 (1999)

    Article  Google Scholar 

  29. Azrar, L., Benamar, R., White, R.G.: A semi-analytical approach to the nonlinear dynamic response problem of beams at large vibration amplitudes, part II: multimode approach to the steady state forced periodic response. Journal Sound Vib. 255(1), 1–41 (2002)

    Article  Google Scholar 

  30. Harras, B., Benamar, R., White, R.G.: Geometrically nonlinear free vibration of fully clamped symmetrically laminated rectangular composite plates. J. Sound Vib. 251, 579–619 (2002)

    Article  Google Scholar 

  31. El Kadiri, M., Benamar, R., White, R.G.: Improvement of the semi-analytical method for determining the geometrically nonlinear response of thin straight structures Part I: application to clamped-clamped and simply supported-clamped beams. J. Sound Vib. 249, 263–305 (2002)

    Article  Google Scholar 

  32. Qaisi, M.I.: Application of the harmonic balance principle to the nonlinear free vibration of beams. Appl. Acoust. 40, 141–151 (1993)

    Article  Google Scholar 

  33. Ribeiro, P., Petyt, M.: Non-linear vibration of beams with internal resonance by the hierarchical finite element method. J. Sound Vib. 224, 591–624 (1999)

    Article  Google Scholar 

  34. Ribeiro, P.: Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods. Comput. Struct. 82, 1413–1423 (2004)

    Article  Google Scholar 

  35. Chen, S.H., Haung, J.L., Sze, K.Y.: Multidimensional Lindstedt–Poincare´ method for nonlinear vibration of axially moving beams. J. Sound Vib. 306, 1–11 (2007)

    Article  Google Scholar 

  36. Cheung, Y.K., Chen, S.H.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140, 273–286 (1990)

    Article  Google Scholar 

  37. Ramezani, A., Alasty, A., Akbari, J.: Effects of rotary inertia and shear deformation on nonlinear free vibration of micro beams. J. Vib. Acoust. 128, 611–615 (2006)

    Article  Google Scholar 

  38. Luongo, A., Rega, G., Vestroni, F.: On nonlinear dynamics of planar shear indeformable beams. J. Appl. Mech. 53, 619–624 (1986)

    Article  Google Scholar 

  39. Lenci, S., Clementi, F., Rega, G.: A comprehensive analysis of hardening/softening behaviour of shearable planar beams with whatever axial boundary constraint. Meccanica 51, 2589–2606 (2016)

    Article  MathSciNet  Google Scholar 

  40. Clementi, F., Lenci, S., Rega, G.: Cross-checking asymptotics and numerics in the hardening/softening behaviour of Timoshenko beams with axial end spring and variable slenderness. Arch. Appl. Mech. 87, 865–880 (2017)

    Article  Google Scholar 

  41. Gupta, R.K., Babu, G.J., Janardhan, G.R., Venkateswara Rao, G.: Relatively simple finite element formulation for the large amplitude free vibrations of uniform beams. Finite Elem. Anal. Des. 45, 624–631 (2009)

    Article  Google Scholar 

  42. Kitipornchai, S., Ke, L.L., Yang, J., Xiang, Y.: Non-linear vibration of edge cracked functionally graded Timoshenko beams. J. Sound Vib. 324, 962–982 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajesh Panigrahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panigrahi, B., Pohit, G. (2019). Nonlinear Static Analysis and Superharmonic Influence on Nonlinear Forced Vibration of Timoshenko Beams. In: Sahoo, P., Davim, J. (eds) Advances in Materials, Mechanical and Industrial Engineering. INCOM 2018. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-96968-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96968-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96967-1

  • Online ISBN: 978-3-319-96968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics