Skip to main content

Microcosm and Macrocosm

  • Chapter
  • First Online:
Probes of Multimessenger Astrophysics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1252 Accesses

Abstract

Particles and their fundamental interactions, astrophysics, and cosmology have become closely related fields. The submicroscopic phenomena allow us to better understand the cosmic evolution, and vice versa. The theory of the electromagnetic, weak, and strong interactions, which mediate the dynamics of the known subatomic particles, is called the Standard Model (SM) of particle physics. The structure of the SM suggests the existence of a Grand Unified Theory (GUT) at a very-high energy scale. Are all interactions (eventually excluding gravitation) really unified at high energies? Which symmetry governs this unification? Most likely, no answer can be provided by accelerator experiments, while some experimental tests of GUT predictions, such as the searches for baryon number nonconservation and the existence of relic particles from the Big Bang, are performed in underground laboratories. The subject within which particle physics, astrophysics, and cosmology are more strictly correlated is that connected with dark matter. The combination of many observations, including galactic rotation curves, gravitational lensing, the cosmic microwave background, and primordial light element abundances, cannot be explained without new, non-SM objects, which may annihilate or decay to ordinary particles detectable far from their source or be scattered by ordinary matter. Although there are other motivations for physics beyond the Standard Model, astrophysics and cosmology give direct evidence for new physics, thus making the search for signatures of dark matter particles an especially compelling area of research. Many dedicated experimental searches (also described in this chapter) have been developed. No conclusive results have been obtained so far from these experiments, nor for signals of physics beyond the Standard Model at accelerators. The next decade will probably be decisive concerning the solution of this joint astroparticle physics-cosmology problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The LSP is also denoted as χ. However, some of the following related discussions can also be extended to other non-SUSY WIMP candidates.

References

  • M.G. Aartsen et al., IceCube Collaboration, Search for dark matter annihilations in the Sun with the 79-string IceCube detector. Phys. Rev. Lett. 110, 131302 (2013)

    Article  ADS  Google Scholar 

  • P.A.R. Ade et al., Planck Collaboration (2014). arXiv:1303.5062v1

  • S. Adrían-Martínez et al., ANTARES Collaboration, First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope. J. Cosmol. Astropart. Phys. 11, 032 (2013). arXiv:1302.6516

  • E. Aprile, T. Doke, Liquid xenon detectors for particle physics and astrophysics. Rev. Mod. Phys. 82, 2053–2097 (2010)

    Article  ADS  Google Scholar 

  • P. Baratella et al., PPPC 4 DMν: a poor particle physicist cookbook for neutrinos from DM annihilations in the sun (2014). arXiv:1312.6408

  • L. Baudis, Direct dark matter detection: the next decade. Dark Univ. 1, 94–108 (2012)

    Article  Google Scholar 

  • D. Bauer et al., Snowmass CF1 summary: WIMP dark matter direct detection (2014). arXiv:1310.8327v2

  • K.G. Begeman, H I rotation curves of spiral galaxies. I - NGC 3198. Astron. Astrophys. 223, 47–60 (1989)

    Google Scholar 

  • G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005)

    Article  ADS  Google Scholar 

  • S. Braibant, G. Giacomelli, M. Spurio, Particle and Fundamental Interactions (Springer, Berlin, 2011). ISBN: 978-9400724631

    MATH  Google Scholar 

  • M. Cirelli et al., PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection. J. Cosmol. Astropart. Phys. 11(03), 051 (2011)

    Article  Google Scholar 

  • A. Drukier, K. Freese, D. Spergel, Detecting cold dark matter candidates. Phys. Rev. D33, 3495–3508 (1986)

    ADS  Google Scholar 

  • J.L. Feng, Dark matter candidates from particle physics and methods of detection. Annu. Rev. Astron. Astrophys. 48, 495–545 (2010)

    Article  ADS  Google Scholar 

  • R.J. Gaitskell, Direct detection of dark matter. Annu. Rev. Nucl. Part. Sci. 54, 315–359 (2004)

    Article  ADS  Google Scholar 

  • G. Giacomelli, Magnetic monopoles. La Rivista del Nuovo Cimento 7(12), 1 (1984)

    Article  Google Scholar 

  • M.W. Goodman, E. Witten, Detectability of certain dark matter candidates. Phys. Rev. D31, 3059 (1985)

    ADS  Google Scholar 

  • W. Hu, S. Dodelson, Cosmic microwave background anisotropies. Ann. Rev. Astron. Astrophys. 40, 171–216 (2002)

    Article  ADS  Google Scholar 

  • G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rep. 267, 195–373 (1996)

    Article  ADS  Google Scholar 

  • J.F. Navarro, C.S. Frenk, S.D. White, The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996)

    Article  ADS  Google Scholar 

  • C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016/2017)

    Google Scholar 

  • L. Patrizii, M. Spurio, Status of searches for magnetic monopoles. Annu. Rev. Nucl. Part. Sci. 65, 279–302 (2015)

    Article  ADS  Google Scholar 

  • D.H. Perkins, Proton decay experiments. Annu. Rev. Nucl. Part. Sci. 34, 1–50 (1984)

    Article  ADS  Google Scholar 

  • T.A. Porter, R.P. Johnson, P.W. Graham, Dark matter searches with astroparticle data. Annu. Rev. Astron. Astrophys. 49, 155–194 (2011)

    Article  ADS  Google Scholar 

  • S. Profumo. TASI 2012 Lectures on astrophysical probes of dark matter (2014). arXiv:1301.0952

  • T. Saab, An introduction to dark matter direct detection searches and techniques (2012). arXiv:1203.2566

  • V. Trimble, Existence and nature of dark matter in the universe. Annu. Rev. Astron. Astrophys. 25, 425–472 (1987)

    Article  ADS  Google Scholar 

  • P.-F. Yin et al., Pulsar interpretation for the AMS-02 result. Phys. Rev. D 88, 023001 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spurio, M. (2018). Microcosm and Macrocosm. In: Probes of Multimessenger Astrophysics. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-96854-4_14

Download citation

Publish with us

Policies and ethics