Skip to main content

Genomic Applications in Thyroid Cancer

  • Chapter
  • First Online:
Genomic Applications in Pathology

Abstract

The last decade has witnessed the characterization of the cancer genome through the harmonized application of next-generation genomic technologies by large research networks such as The Cancer Genome Atlas. Thyroid cancer, especially the most common types derived from follicular thyroid cells, has been included in such genomic efforts. In this chapter, the oncogenic genetic and genomic alterations across the spectrum of thyroid cancers are presented, as well as the resulting genomic clinical applications in molecular pathology. In the current era of precision oncology, these genomic advances are yielding critical insights into thyroid cancer pathogenesis and facilitating the development of novel diagnostic molecular tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  3. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418–26.

    Article  PubMed  CAS  Google Scholar 

  4. Blum A, Wang P, Zenklusen JC. SnapShot: TCGA-analyzed tumors. Cell. 2018;173(2):530.

    Article  CAS  PubMed  Google Scholar 

  5. Giordano TJ. Genomic hallmarks of thyroid neoplasia. Annu Rev Pathol. 2018;13:141–62.

    Article  CAS  PubMed  Google Scholar 

  6. Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    Article  CAS  Google Scholar 

  7. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173(2):371–85.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24(8):2318–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karunamurthy A, Panebianco F, Hsiao S J, Vorhauer J, Nikiforova MN, Chiosea S, et al. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer. 2016;23(4):295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–66.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12(8):e1006239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Martin-Marcos P, Zhou F, Karunasiri C, Zhang F, Dong J, Nanda J, et al. eIF1A residues implicated in cancer stabilize translation preinitiation complexes and favor suboptimal initiation sites in yeast. elife. 2017;6

    Google Scholar 

  13. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wreesmann VB, Ghossein RA, Hezel M, Banerjee D, Shaha AR, Tuttle RM, et al. Follicular variant of papillary thyroid carcinoma: genome-wide appraisal of a controversial entity. Genes Chromosomes Cancer. 2004;40(4):355–64.

    Article  CAS  PubMed  Google Scholar 

  15. Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell. 2018;33(4):676–89. e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vandin F, Clay P, Upfal E, Raphael BJ. Discovery of mutated subnetworks associated with clinical data in cancer. Pac Symp Biocomput. 2012:55–66.

    Google Scholar 

  17. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):D777–D83.

    Article  CAS  PubMed  Google Scholar 

  18. Eszlinger M, Krohn K, Hauptmann S, Dralle H, Giordano TJ, Paschke R. Perspectives for improved and more accurate classification of thyroid epithelial tumors. J Clin Endocrinol Metab. 2008;93(9):3286–94.

    Article  CAS  PubMed  Google Scholar 

  19. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627–34.

    Article  CAS  PubMed  Google Scholar 

  20. Wylie D, Beaudenon-Huibregtse S, Haynes BC, Giordano TJ, Labourier E. Molecular classification of thyroid lesions by combined testing for miRNA gene expression and somatic gene alterations. J Pathol Clin Res. 2016;2(2):93–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fagin JA, Wells SA Jr. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016;375(11):1054–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kidger AM, Keyse SM. The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Semin Cell Dev Biol. 2016;50:125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Afkhami M, Karunamurthy A, Chiosea S, Nikiforova MN, Seethala R, Nikiforov YE, et al. Histopathologic and clinical characterization of thyroid tumors carrying the BRAF(K601E) mutation. Thyroid. 2016;26(2):242–7.

    Article  CAS  PubMed  Google Scholar 

  24. Pozdeyev N, Gay L, Sokol ES, Hartmaier RJ, Deaver KE, Davis SN, et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res. 2018;24:3059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn. 2015;17(3):251–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31(11):1023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prasad ML, Vyas M, Horne MJ, Virk RK, Morotti R, Liu Z, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in Northeast United States. Cancer. 2016;122(7):1097–107.

    Article  CAS  PubMed  Google Scholar 

  28. Hardee S, Prasad ML, Hui P, Dinauer CA, Morotti RA. Pathologic characteristics, natural history, and prognostic implications of BRAF(V600E) mutation in pediatric papillary thyroid carcinoma. Pediatr Dev Pathol. 2017;20(3):206–12.

    Article  PubMed  Google Scholar 

  29. Vanden Borre P, Schrock AB, Anderson PM, Morris JC 3rd, Heilmann AM, Holmes O, et al. Pediatric, adolescent, and young adult thyroid carcinoma harbors frequent and diverse targetable genomic alterations, including kinase fusions. Oncologist. 2017;22(3):255–63.

    Article  CAS  Google Scholar 

  30. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 2018;173(2):291–304. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ding L, Bailey MH, Porta-Pardo E, Thorsson V, Colaprico A, Bertrand D, et al. Perspective on oncogenic processes at the end of the beginning of cancer genomics. Cell. 2018;173(2):305–20. e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity. 2018;48(4):812–30. e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173(2):321–37. e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88(5):2318–26.

    Article  CAS  PubMed  Google Scholar 

  35. Harach HR, Soubeyran I, Brown A, Bonneau D, Longy M. Thyroid pathologic findings in patients with Cowden disease. Ann Diagn Pathol. 1999;3(6):331–40.

    Article  CAS  PubMed  Google Scholar 

  36. Swierniak M, Pfeifer A, Stokowy T, Rusinek D, Chekan M, Lange D, et al. Somatic mutation profiling of follicular thyroid cancer by next generation sequencing. Mol Cell Endocrinol. 2016;433:130–7.

    Article  CAS  PubMed  Google Scholar 

  37. Jung SH, Kim MS, Jung CK, Park HC, Kim SY, Liu J, et al. Mutational burdens and evolutionary ages of thyroid follicular adenoma are comparable to those of follicular carcinoma. Oncotarget. 2016;7(43):69638–48.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hemmer S, Wasenius VM, Knuutila S, Joensuu H, Franssila K. Comparison of benign and malignant follicular thyroid tumours by comparative genomic hybridization. Br J Cancer. 1998;78(8):1012–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roque L, Rodrigues R, Pinto A, Moura-Nunes V, Soares J. Chromosome imbalances in thyroid follicular neoplasms: a comparison between follicular adenomas and carcinomas. Genes Chromosomes Cancer. 2003;36(3):292–302.

    Article  CAS  PubMed  Google Scholar 

  40. Garcia-Rendueles ME, Ricarte-Filho JC, Untch BR, Landa I, Knauf JA, Voza F, et al. NF2 loss promotes oncogenic RAS-induced thyroid cancers via YAP-dependent transactivation of RAS proteins and sensitizes them to MEK inhibition. Cancer Discov. 2015;5(11):1178–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu T, Wang N, Cao J, Sofiadis A, Dinets A, Zedenius J, et al. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene. 2014;33(42):4978–84.

    Article  CAS  PubMed  Google Scholar 

  42. Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99(5):E754–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim TH, Kim YE, Ahn S, Kim JY, Ki CS, Oh YL, et al. TERT promoter mutations and long-term survival in patients with thyroid cancer. Endocr Relat Cancer. 2016;23(10):813–23.

    Article  CAS  PubMed  Google Scholar 

  44. Liu R, Xing M. TERT promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016;23(3):R143–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Song J, Yang Z. Case report: whole exome sequencing of circulating cell-free tumor DNA in a follicular thyroid carcinoma patient with lung and bone metastases. J Circ Biomark. 2018;7:1849454418763725.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Carcangiu ML. Hurthle cell carcinoma: clinic-pathological and biological aspects. Tumori. 2003;89(5):529–32.

    Article  PubMed  Google Scholar 

  47. Satoh M, Yagawa K. Electron microscopic study on mitochondria in Hurthle cell adenoma of thyroid. Acta Pathol Jpn. 1981;31(6):1079–87.

    CAS  PubMed  Google Scholar 

  48. Gasparre G, Porcelli AM, Bonora E, Pennisi LF, Toller M, Iommarini L, et al. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci U S A. 2007;104(21):9001–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Evangelisti C, de Biase D, Kurelac I, Ceccarelli C, Prokisch H, Meitinger T, et al. A mutation screening of oncogenes, tumor suppressor gene TP53 and nuclear encoded mitochondrial complex I genes in oncocytic thyroid tumors. BMC Cancer. 2015;15:157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ganly I, Ricarte Filho J, Eng S, Ghossein R, Morris LG, Liang Y, et al. Genomic dissection of Hurthle cell carcinoma reveals a unique class of thyroid malignancy. J Clin Endocrinol Metab. 2013;98(5):E962–72.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Corver WE, Ruano D, Weijers K, den Hartog WC, van Nieuwenhuizen MP, de Miranda N, et al. Genome haploidisation with chromosome 7 retention in oncocytic follicular thyroid carcinoma. PLoS One. 2012;7(6):e38287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu B, Ghossein R. Genomic landscape of poorly differentiated and anaplastic thyroid carcinoma. Endocr Pathol. 2016;27(3):205–12.

    Article  CAS  PubMed  Google Scholar 

  53. Volante M, Rapa I, Gandhi M, Bussolati G, Giachino D, Papotti M, et al. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab. 2009;94(12):4735–41.

    Article  CAS  PubMed  Google Scholar 

  54. Pita JM, Figueiredo IF, Moura MM, Leite V, Cavaco BM. Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99(3):E497–507.

    Article  CAS  PubMed  Google Scholar 

  55. Hiltzik D, Carlson DL, Tuttle RM, Chuai S, Ishill N, Shaha A, et al. Poorly differentiated thyroid carcinomas defined on the basis of mitosis and necrosis: a clinicopathologic study of 58 patients. Cancer. 2006;106(6):1286–95.

    Article  PubMed  Google Scholar 

  56. Bonhomme B, Godbert Y, Perot G, Al Ghuzlan A, Bardet S, Belleannee G, et al. Molecular pathology of anaplastic thyroid carcinomas: a retrospective study of 144 cases. Thyroid. 2017;27(5):682–92.

    Article  CAS  PubMed  Google Scholar 

  57. Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170(6):1062–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eischen CM. Genome stability requires p53. Cold Spring Harb Perspect Med. 2016;6(6):pii: a026096.

    Article  CAS  Google Scholar 

  59. Tomasini R, Mak TW, Melino G. The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol. 2008;18(5):244–52.

    Article  CAS  PubMed  Google Scholar 

  60. Klemi PJ, Joensuu H, Eerola E. DNA aneuploidy in anaplastic carcinoma of the thyroid gland. Am J Clin Pathol. 1988;89(2):154–9.

    Article  CAS  PubMed  Google Scholar 

  61. Pinto AE, Silva G, Banito A, Leite V, Soares J. Aneuploidy and high S-phase as biomarkers of poor clinical outcome in poorly differentiated and anaplastic thyroid carcinoma. Oncol Rep. 2008;20(4):913–9.

    CAS  PubMed  Google Scholar 

  62. Baldini E, Sorrenti S, Tartaglia F, Catania A, Palmieri A, Pironi D, et al. New perspectives in the diagnosis of thyroid follicular lesions. Int J Surg. 2017;41(Suppl 1):S7–S12.

    Article  PubMed  Google Scholar 

  63. Cibas ES. Fine-needle aspiration in the work-up of thyroid nodules. Otolaryngol Clin N Am. 2010;43(2):257–71. vii–viii.

    Article  Google Scholar 

  64. Nishino M, Nikiforova M. Update on molecular testing for cytologically indeterminate thyroid nodules. Arch Pathol Lab Med. 2018;142(4):446–57.

    Article  PubMed  CAS  Google Scholar 

  65. Vargas-Salas S, Martinez JR, Urra S, Dominguez JM, Mena N, Uslar T, et al. Genetic testing for indeterminate thyroid cytology: review and meta-analysis. Endocr Relat Cancer. 2018;25(3):R163–R77.

    Article  PubMed  Google Scholar 

  66. Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98(11):E1852–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid. 2015;25(11):1217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana-Santos L, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer. 2018;124(8):1682–90.

    Article  CAS  PubMed  Google Scholar 

  69. Jug RC, Datto MB, Jiang XS. Molecular testing for indeterminate thyroid nodules: performance of the Afirma gene expression classifier and ThyroSeq panel. Cancer Cytopathol. 2018; https://doi.org/10.1002/cncy.21993.

  70. Kloos RT. Molecular profiling of thyroid nodules: current role for the Afirma gene expression classifier on clinical decision making. Mol Imaging Radionucl Ther. 2017;26(Suppl 1):36–49.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Duh QY, Busaidy NL, Rahilly-Tierney C, Gharib H, Randolph G. A systematic review of the methods of diagnostic accuracy studies of the Afirma gene expression classifier. Thyroid. 2017;27(10):1215–22.

    Article  PubMed  Google Scholar 

  72. Aragon Han P, Olson MT, Fazeli R, Prescott JD, Pai SI, Schneider EB, et al. The impact of molecular testing on the surgical management of patients with thyroid nodules. Ann Surg Oncol. 2014;21(6):1862–9.

    Article  PubMed  Google Scholar 

  73. Sacks WL, Bose S, Zumsteg ZS, Wong R, Shiao SL, Braunstein GD, et al. Impact of Afirma gene expression classifier on cytopathology diagnosis and rate of thyroidectomy. Cancer Cytopathol. 2016;124(10):722–8.

    Article  PubMed  Google Scholar 

  74. Guo HQ, Zhao H, Zhang ZH, Zhu YL, Xiao T, Pan QJ. Impact of molecular testing in the diagnosis of thyroid fine needle aspiration cytology: data from mainland China. Dis Markers. 2014;2014:912182.

    PubMed  PubMed Central  Google Scholar 

  75. Nicholson KJ, Yip L. An update on the status of molecular testing for the indeterminate thyroid nodule and risk stratification of differentiated thyroid cancer. Curr Opin Oncol. 2018;30(1):8–15.

    Article  PubMed  Google Scholar 

  76. Bisarro Dos Reis M, Barros-Filho MC, Marchi FA, Beltrami CM, Kuasne H, Pinto CAL, et al. Prognostic classifier based on genome-wide DNA methylation profiling in well-differentiated thyroid tumors. J Clin Endocrinol Metab. 2017;102(11):4089–99.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Giordano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giordano, T.J. (2019). Genomic Applications in Thyroid Cancer. In: Netto, G., Kaul, K. (eds) Genomic Applications in Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-96830-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96830-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96829-2

  • Online ISBN: 978-3-319-96830-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics